The Role of IkZF Factors in Mediating TH1/TFH Development and Flexibility
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The ability of cells within the adaptive immune system to develop into specialized subsets allow for a robust and tailored immune response in the advent of an infection or injury. Here, CD4+ T-cells are a crucial component within this system, with subsets such as TH1, TH2, TH17, TFH and TREG cells playing vital roles in propagating cell-mediated immunity. For example, TH1 cells are essential in combating intracellular pathogens such as viruses, while TFH cells communicate with B-cells to optimize antibody responses against an invading pathogen. The development (and functionality) of these subsets is ultimately dictated by the appropriate integration of extracellular cues such as cytokines with cell intrinsic transcription factors, thereby promoting the necessary gene profile. Moreover, the observation that T-helper cells could exhibit a flexible nature (i.e having shared gene profiles and effector functions) not only demonstrate the efficiency of our immune system but also how such flexibility could have unintended consequences during adverse events such as autoimmunity. An important mediator of such flexibility is cytokines. However, the complete network of factors that come together to co-ordinate cytokine mediated plasticity remain unknown. Thus, the work in this dissertation hope to delineate the factors that collaborate to regulate cytokine induced T-helper cell flexibility. As such, we see that in the presence of IL-2, the Ikaros Zinc Finger (IkZF) transcription factor Eos is upregulated in TH1 cells, with this factor playing a significant role in promoting regulatory and effector functions of TH1 cells. Moreover, we show that Eos forms a novel protein complex with STAT5 and promotes STAT5 activity in TH1 cells. However, depleting IL-2 from the micro-environment leads to the upregulation of two other members within the IkZF family, Ikaros and Aiolos. Aiolos in turn collaborate with STAT3, induces Bcl-6 expression within these cells, thus promoting these cells to exhibit characteristic features of TFH cells. The work in this dissertation hopes to advance our understanding of the regulatory mechanisms involved in cytokine mediated T-cell flexibility thereby hoping to open new avenues for the development of novel therapeutic strategies in the event of autoimmunity.