Circumferential Three-Dimensional Profiling with Specular Micro-Texture Photometry for Dark Objects


TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


This dissertation proposes a novel approach to achieve circumferential three-dimensional (3D) profiling for dark objects by investigating specular micro-texture photometry. A small patch of a target surface in micro-texture level yields different appearance under different illumination. This photometric property can be used to reconstruct the target surface with pixel-level resolution. However, due to the nature of some material, the surface of whom has stronger specular components than diffuse components, making the usage of general microtexture photometry more difficult. On the other hand, without using micro-texture photometry, the conventional circumferential 3D approaches only utilizes the geometric property of the target surface, compared to which, the proposed is able to reconstruct the target surface with finer detail.

The original contributions of this dissertation are threefold. To begin with, the specular component in the micro-texture photometry is investigated to propose the pixel-level 3D profiling. The intensities of the same pixel from different images, which are taken under different lighting conditions are different. The specular components are used to recover the surface normal of the corresponding surface patch of the target surface. Consequently, the proposed specular-photometry-based technique produces pixel-wise measurement on surface normal.

Furthermore, the conventional circumferential 3D profiling approach is extended with the proposed specular-photometry-based technique. The result of 3D profiling via the conventional approach is sparse due to its nature. On the other hand, the result of 3D profiling from the integration using the surface normal obtained from the proposed specular-photometry-based technique suffers from accumulative error. A new approach is then proposed to use the result from the conventional approach as global constraint, for the purpose of reducing the accumulative error. The proposed approach is able to achieve pixel-resolution globally bounded profiling because of the dense surface normal measurement from the proposed specular-photometry-based technique and the constraints from the conventional approach.

Lastly, a system is developed to apply the proposed circumferential specular-photometry-based 3D profiling approach. The developed system is not only able to acquire data and but also to provide different lighting conditions for both the specular-photometry-based technique and conventional approach using a digital single-lens reflex camera and different lighting devices. With a step motor to rotate the object for three hundred and sixty degrees, the system is able to achieve circumferential scanning



Visual-based Measurement, Micro-texture Profiling, Photometric Stereo, Circumferential 3D Profiling