A Bayesian Approach to Estimating Background Flows from a Passive Scalar

TR Number

Date

2018-06-26

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

We consider the statistical inverse problem of estimating a background flow field (e.g., of air or water) from the partial and noisy observation of a passive scalar (e.g., the concentration of a pollutant). Here the unknown is a vector field that is specified by large or infinite number of degrees of freedom. We show that the inverse problem is ill-posed, i.e., there may be many or no background flows that match a given set of observations. We therefore adopt a Bayesian approach, incorporating prior knowledge of background flows and models of the observation error to develop probabilistic estimates of the fluid flow. In doing so, we leverage frameworks developed in recent years for infinite-dimensional Bayesian inference. We provide conditions under which the inference is consistent, i.e., the posterior measure converges to a Dirac measure on the true background flow as the number of observations of the solute concentration grows large. We also define several computationally-efficient algorithms adapted to the problem. One is an adjoint method for computation of the gradient of the log likelihood, a key ingredient in many numerical methods. A second is a particle method that allows direct computation of point observations of the solute concentration, leveraging the structure of the inverse problem to avoid approximation of the full infinite-dimensional scalar field. Finally, we identify two interesting example problems with very different posterior structures, which we use to conduct a large-scale benchmark of the convergence of several Markov Chain Monte Carlo methods that have been developed in recent years for infinite-dimensional settings.

Description

Keywords

Bayesian Statistical Inversion, Bayesian Consistency, Markov Chain Monte Carlo (MCMC), Passive Scalars, Fluid Turbulence

Citation