Advanced Applications of Raman Spectroscopy for Environmental Analyses

dc.contributor.authorLahr, Rebecca Halvorsonen
dc.contributor.committeechairVikesland, Peter J.en
dc.contributor.committeememberRoman, Marenen
dc.contributor.committeememberDietrich, Andrea M.en
dc.contributor.committeememberPruden, Amyen
dc.contributor.departmentCivil and Environmental Engineeringen
dc.date.accessioned2015-07-04T06:00:07Zen
dc.date.available2015-07-04T06:00:07Zen
dc.date.issued2014-01-09en
dc.description.abstractDue to an ever-increasing global population and limited resource availability, there is a constant need for detection of both natural and anthropogenic hazards in water, air, food, and material goods. Traditionally a different instrument would be used to detect each class of contaminant, often after a concentration or separation protocol to extract the analyte from its matrix. Raman spectroscopy is unique in its ability to detect organic or inorganic, airborne or waterborne, and embedded or adsorbed analytes within environmental systems. This ability comes from the inherent abilities of the Raman spectrometer combined with concentration, separation, and signal enhancement provided by drop coating deposition Raman (DCDR) and surface-enhanced Raman spectroscopy (SERS). Herein the capacity of DCDR to differentiate between cyanotoxin variants in aqueous solutions was demonstrated using principal component analysis (PCA) to statistically demonstrate spectral differentiation. A set of rules was outlined based on Raman peak ratios to allow an inexperienced user to determine the toxin variant identity from its Raman spectrum. DCDR was also employed for microcystin-LR (MC-LR) detection in environmental waters at environmentally relevant concentrations, after pre-concentration with solid-phase extraction (SPE). In a cellulose matrix, SERS and normal Raman spectral imaging revealed nanoparticle transport and deposition patterns, illustrating that nanoparticle surface coating dictated the observed transport properties. Both SERS spectral imaging and insight into analyte transport in wax-printed paper microfluidic channels will ultimately be useful for microfluidic paper-based analytical device (𝜇PAD) development. Within algal cells, SERS produced 3D cellular images in the presence of intracellularly biosynthesized gold nanoparticles (AuNP), documenting in detail the molecular vibrations of biomolecules at the AuNP surfaces. Molecules involved in nanoparticle biosynthesis were identified at AuNP surfaces within algal cells, thus aiding in mechanism elucidation. The capabilities of Raman spectroscopy are endless, especially in light of SERS tag design, coordinating detection of analytes that do not inherently produce strong Raman vibrations. The increase in portable Raman spectrometer availability will only facilitate cheaper, more frequent application of Raman spectrometry both in the field and the lab. The tremendous detection power of the Raman spectrometer cannot be ignored.en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:1832en
dc.identifier.urihttp://hdl.handle.net/10919/54010en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectSurface-enhanced Raman spectroscopy (SERS)en
dc.subjectdrop coating deposition Raman (DCDR)en
dc.subjectcyanotoxinen
dc.subjectmicrocystin-LRen
dc.subjectcellular imagingen
dc.subjectgold nanoparticlesen
dc.subjectintracellular biosynthesisen
dc.subjectalgaeen
dc.subjectwax-printed microfluidic paper based analytical devices (μPADs)en
dc.titleAdvanced Applications of Raman Spectroscopy for Environmental Analysesen
dc.typeDissertationen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Lahr_RH_D_2014.pdf
Size:
6.83 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Lahr_RH_D_2014_support_1.pdf
Size:
488.48 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents