The semiclassical limit of quantum dynamics
Files
TR Number
Date
1986
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Polytechnic Institute and State University
Abstract
We study the ħ→0 limit of the quantum dynamics determined by the Hamiltonian H(ħ) = -(ħ²/2m)Δ + V on L²(ℝn) for a large class of potentials. By convolving with certain Gaussian states we obtain classically determined asymptotic behavior of the quantum evolution of states of compact support. For suitable potentials we obtain the analogus result for the scattering operator in the position representation. For initial or incoming states of class Co¹ the error terms are shown to have L² norms of order ħ½-ε for arbitrarily small positive ε.