Nearest Neighbor Classifier – From Theory to Practice
dc.contributor.author | Torfi, Amirsina | en |
dc.date.accessioned | 2020-01-11T19:02:55Z | en |
dc.date.available | 2020-01-11T19:02:55Z | en |
dc.date.issued | 2020-01-11 | en |
dc.description.abstract | The K-nearest neighbors (KNNs) classifier or simply Nearest Neighbor Classifier is a kind of supervised machine learning algorithm that operates based on spatial distance measurements. In this article, we investigate the theory behind it. Furthermore, a working example of the k-nearest neighbor classifier will be represented. | en |
dc.identifier.uri | http://hdl.handle.net/10919/96404 | en |
dc.language.iso | en_US | en |
dc.publisher | Machine Learning Mindset | en |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | en |
dc.subject | Machine learning | en |
dc.subject | Supervised Learning | en |
dc.subject | Nearest Neighbor Algorithm | en |
dc.title | Nearest Neighbor Classifier – From Theory to Practice | en |
dc.type | Article | en |
dc.type | Software | en |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.5 KB
- Format:
- Item-specific license agreed upon to submission
- Description: