Nearest Neighbor Classifier – From Theory to Practice

dc.contributor.authorTorfi, Amirsinaen
dc.date.accessioned2020-01-11T19:02:55Zen
dc.date.available2020-01-11T19:02:55Zen
dc.date.issued2020-01-11en
dc.description.abstractThe K-nearest neighbors (KNNs) classifier or simply Nearest Neighbor Classifier is a kind of supervised machine learning algorithm that operates based on spatial distance measurements. In this article, we investigate the theory behind it. Furthermore, a working example of the k-nearest neighbor classifier will be represented.en
dc.identifier.urihttp://hdl.handle.net/10919/96404en
dc.language.isoen_USen
dc.publisherMachine Learning Mindseten
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 United Statesen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/en
dc.subjectMachine learningen
dc.subjectSupervised Learningen
dc.subjectNearest Neighbor Algorithmen
dc.titleNearest Neighbor Classifier – From Theory to Practiceen
dc.typeArticleen
dc.typeSoftwareen

Files

Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
knn.pdf
Size:
183.58 KB
Format:
Adobe Portable Document Format
Name:
knn.zip
Size:
86.46 KB
Format:
Name:
knnsourcecode.zip
Size:
21.33 KB
Format:
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: