Uncertainty Quantification in Stochastic Economic Dispatch using Gaussian Process Emulation
dc.contributor.author | Hu, Zhixiong | en |
dc.contributor.author | Xu, Yijun | en |
dc.contributor.author | Korkali, Mert | en |
dc.contributor.author | Chen, Xiao | en |
dc.contributor.author | Mili, Lamine M. | en |
dc.contributor.author | Tong, Charles H. | en |
dc.date.accessioned | 2024-01-22T14:53:38Z | en |
dc.date.available | 2024-01-22T14:53:38Z | en |
dc.date.issued | 2020 | en |
dc.description.abstract | The increasing penetration of renewable energy resources in power systems, represented as random processes, converts the traditional deterministic economic dispatch problem into a stochastic one. To solve this stochastic economic dispatch, the conventional Monte Carlo method is prohibitively time consuming for medium- and large-scale power systems. To overcome this problem, we propose in this paper a novel Gaussian-process-emulator-based approach to quantify the uncertainty in the stochastic economic dispatch considering wind power penetration. Based on the dimension-reduction results obtained by the Karhunen-Loeve expansion, a Gaussian-process emulator is constructed. This surrogate allows us to evaluate the economic dispatch solver at sampled values with a negligible computational cost while maintaining a desirable accuracy. Simulation results conducted on the IEEE 118-bus system reveal that the proposed method has an excellent performance as compared to the traditional Monte Carlo method. | en |
dc.description.version | Published version | en |
dc.format.extent | 5 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/isgt45199.2020.9087714 | en |
dc.identifier.isbn | 9781728131030 | en |
dc.identifier.issn | 2167-9665 | en |
dc.identifier.orcid | Mili, Lamine [0000-0001-6134-3945] | en |
dc.identifier.uri | https://hdl.handle.net/10919/117516 | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.rights | Public Domain (U.S.) | en |
dc.rights.uri | http://creativecommons.org/publicdomain/mark/1.0/ | en |
dc.title | Uncertainty Quantification in Stochastic Economic Dispatch using Gaussian Process Emulation | en |
dc.title.serial | 2020 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT) | en |
dc.type | Conference proceeding | en |
dc.type.dcmitype | Text | en |
dc.type.other | Proceedings Paper | en |
dc.type.other | Book in series | en |
pubs.finish-date | 2020-02-20 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.start-date | 2020-02-17 | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Uncertainty_Quantification_in_Stochastic_Economic_Dispatch_using_Gaussian_Process_Emulation.pdf
- Size:
- 236.5 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1