VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Adaptive Predictive Controllers for Agile Quadrupedal Locomotion with Unknown Payloads

TR Number

Date

2024-07-12

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Quadrupedal robots play a vital role in various applications, from search and rescue operations to exploration in challenging terrains. However, locomotion tasks involving unknown payload transportation on rough terrains pose significant challenges, requiring adaptive control strategies to ensure stability and performance. This dissertation contributes to the advancement of adaptive motion planning and control solutions that enable quadrupedal robots to traverse unknown rough environments while tasked with transporting unknown payloads.

In the first project, a novel hierarchical planning and control framework for robust payload transportation by quadrupedal robots is developed. This framework integrates an adaptive model predictive control (AMPC) algorithm with a gradient-descent-based adaptive updating law applied to reduced-order locomotion (i.e., template) models. At the high level of the control hierarchy, an indirect adaptive law estimates unknown parameters of the reduced-order locomotion model under varying payloads, ensuring stability during trajectory planning. The optimal trajectories generated by the AMPC are then passed to a low-level and full-order nonlinear whole-body controller (WBC) for tracking. Extensive numerical investigations and hardware experiments on the A1 quadru[pedal robot validate the framework's capabilities, showcasing significant improvements in payload transportation on both flat and rough terrains compared to conventional MPC strategies. Specifically, the robot demonstrates proficiency in transporting unmodeled, unknown static payloads up to 109% of its own mass in experiments on flat terrains and 91% on rough experimental terrains. Moreover, the robot successfully manages dynamic payloads with 73% of its mass on rough terrains.

Adaptive controllers must also address external disturbances inherent in real-world environments. Therefore, the second project introduces a hierarchical planning and control scheme with an adaptive L1 nonlinear model predictive control (ANMPC) at the high level, which integrates nonlinear MPC (NMPC) with an L1 adaptive controller. The prescribed optimal state and control input profiles generated by the ANMPC are then fed to the low-level nonlinear WBC. This approach aims to stabilize locomotion gaits in the presence of parametric uncertainties and external disturbances. The proposed controller is analyzed to accommodate uncertainties and external disturbances. Comprehensive numerical simulations and experimental validations on the A1 quadrupedal robot demonstrate its effectiveness on rough terrains. Numerical results suggest that ANMPC significantly improves the stability of the gaits in the presence of uncertainties and external disturbances compared to NMPC and AMPC. The robot can carry payloads up to 109% of its own mass on its trunk on flat and rough terrains. Simulation results show that the robot achieves a maximum payload capacity of 26.3 (kg), which is equivalent to 211% of its own mass on rough terrains with uncertainties and disturbances.

Description

Keywords

Adaptive MPC, Reduced-order models, Adaptive control, Parameter estimation, Quadrupedal robots

Citation