A continuous-time stochastic Boolean model provides a quantitative description of the budding yeast cell cycle
dc.contributor.author | Laomettachit, Teeraphan | en |
dc.contributor.author | Kraikivski, Pavel | en |
dc.contributor.author | Tyson, John J. | en |
dc.date.accessioned | 2022-12-21T14:47:22Z | en |
dc.date.available | 2022-12-21T14:47:22Z | en |
dc.date.issued | 2022-12-01 | en |
dc.date.updated | 2022-12-21T02:23:24Z | en |
dc.description.abstract | The cell division cycle is regulated by a complex network of interacting genes and proteins. The control system has been modeled in many ways, from qualitative Boolean switching-networks to quantitative differential equations and highly detailed stochastic simulations. Here we develop a continuous-time stochastic model using seven Boolean variables to represent the activities of major regulators of the budding yeast cell cycle plus one continuous variable representing cell growth. The Boolean variables are updated asynchronously by logical rules based on known biochemistry of the cell-cycle control system using Gillespie’s stochastic simulation algorithm. Time and cell size are updated continuously. By simulating a population of yeast cells, we calculate statistical properties of cell cycle progression that can be compared directly to experimental measurements. Perturbations of the normal sequence of events indicate that the cell cycle is 91% robust to random ‘flips’ of the Boolean variables, but 9% of the perturbations induce lethal mistakes in cell cycle progression. This simple, hybrid Boolean model gives a good account of the growth and division of budding yeast cells, suggesting that this modeling approach may be as accurate as detailed reaction-kinetic modeling with considerably less demands on estimating rate constants. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | 20302 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1038/s41598-022-24302-6 | en |
dc.identifier.eissn | 2045-2322 | en |
dc.identifier.issn | 2045-2322 | en |
dc.identifier.issue | 1 | en |
dc.identifier.orcid | Kraikivski, Pavel [0000-0001-7742-0140] | en |
dc.identifier.other | 10.1038/s41598-022-24302-6 (PII) | en |
dc.identifier.pmid | 36434030 | en |
dc.identifier.uri | http://hdl.handle.net/10919/112967 | en |
dc.identifier.volume | 12 | en |
dc.language.iso | en | en |
dc.publisher | Springer Nature | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/36434030 | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Bioengineering | en |
dc.subject | Rare Diseases | en |
dc.subject.mesh | Saccharomycetales | en |
dc.subject.mesh | Cell Cycle | en |
dc.subject.mesh | Cell Division | en |
dc.subject.mesh | Models, Biological | en |
dc.subject.mesh | Cell Cycle Checkpoints | en |
dc.title | A continuous-time stochastic Boolean model provides a quantitative description of the budding yeast cell cycle | en |
dc.title.serial | Scientific Reports | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dcterms.dateAccepted | 2022-11-14 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/Dean of Science | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s41598-022-24302-6.pdf
- Size:
- 3.16 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version