Observability Analysis of a Power System Stochastic Dynamic Model Using a Derivative-Free Approach
dc.contributor.author | Zheng, Zongsheng | en |
dc.contributor.author | Xu, Yijun | en |
dc.contributor.author | Mili, Lamine M. | en |
dc.contributor.author | Liu, Zhigang | en |
dc.contributor.author | Korkali, Mert | en |
dc.contributor.author | Wang, Yuhong | en |
dc.date.accessioned | 2024-01-23T18:19:25Z | en |
dc.date.available | 2024-01-23T18:19:25Z | en |
dc.date.issued | 2021-05-13 | en |
dc.description.abstract | Serving as a prerequisite to power system dynamic state estimation, the observability analysis of a power system dynamic model has recently attracted the attention of many power engineers. However, because this model is typically nonlinear and large-scale, the analysis of its observability is a challenge to the traditional derivative-based methods. Indeed, the linear-approximation-based approach may provide unreliable results while the nonlinear-technique-based approach inevitably faces extremely complicated derivations. Furthermore, because power systems are intrinsically stochastic, the traditional deterministic approaches may lead to inaccurate observability analyses. Facing these challenges, we propose a novel polynomial-chaos-based derivative-free observability analysis approach that not only is free of any linear approximations, but also accounts for the stochasticity of the dynamic model while bringing a low implementation complexity. Furthermore, this approach enables us to quantify the degree of observability of a stochastic model, what conventional deterministic methods cannot do. The excellent performance of the proposed method has been demonstrated by performing extensive simulations using a synchronous generator model with IEEE-DC1A exciter and the TGOV1 turbine governor. | en |
dc.description.version | Published version | en |
dc.format.extent | Pages 5834-5845 | en |
dc.format.extent | 12 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/TPWRS.2021.3079919 | en |
dc.identifier.eissn | 1558-0679 | en |
dc.identifier.issn | 0885-8950 | en |
dc.identifier.issue | 6 | en |
dc.identifier.orcid | Mili, Lamine [0000-0001-6134-3945] | en |
dc.identifier.uri | https://hdl.handle.net/10919/117620 | en |
dc.identifier.volume | 36 | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000709092000083&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | Public Domain (U.S.) | en |
dc.rights.uri | http://creativecommons.org/publicdomain/mark/1.0/ | en |
dc.subject | Observability | en |
dc.subject | Analytical models | en |
dc.subject | Power system dynamics | en |
dc.subject | Power system stability | en |
dc.subject | Stochastic processes | en |
dc.subject | Computational modeling | en |
dc.subject | Power systems | en |
dc.subject | Dynamic state estimation | en |
dc.subject | observability analysis | en |
dc.subject | derivative-free | en |
dc.subject | polynomial chaos | en |
dc.subject | degree of observability | en |
dc.title | Observability Analysis of a Power System Stochastic Dynamic Model Using a Derivative-Free Approach | en |
dc.title.serial | IEEE Transactions on Power Systems | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Yijun-Mili_Observability_Analysis_of_a_Power_System_Stochastic_Dynamic_Model_Using_a_Derivative-Free_Approach.pdf
- Size:
- 2.72 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1