Model Development and Monte-Carlo Methods for the Simulation and Analysis of Coastal Impacts of Barrier Island Breach During Hurricanes
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Barrier islands can protect the mainland from flooding during storms through reduction of storm surge and dissipation of storm generated wave energy. However, the protective capability is reduced when barrier islands breach and a direct hydrodynamic connection between the water bodies on both sides of the barrier island is established. Breaching of barrier islands during large storm events is complicated, involving nonlinear processes that connect water, sediment transport, dune height, and island width among other factors. In order to assess the impacts barrier island breaching has on flooding on the mainland, we modified a storm surge model, GeoClaw, to impose a Gaussian bell-curve on the barrier island that opens during a hurricane simulation and deepened over time. We added a new method of generating storm surge with storm forcing inputs in the form of wind and pressure fields to expand GeoClaw's current utilization of best track information so that storm forcing from planetary boundary layer models can also be utilized in simulations. We created a statistical method to assess the sensitivity of mainland storm-surge to barrier island breaching by randomizing the location, time, and extent of a breach event across the barrier island at Moriches, NY. My results show that total mainland inundation is affected by the changes in location, size, timing and numbers of breaches. Total inundation has a logarithmic relationship with total breach area and breach location is an important predictor of inundation and bay surge. The insights from this study can help prepare shoreline communities for the differing ways that breaching affects the mainland coastline. The model updates created can also allow others to use this framework to study differing regions. Understanding which mainland locations are vulnerable to breaching, planners and coastal engineers can design interventions to reduce the likelihood of a breach occurring in areas adjacent to high flood risk.