Photorespiration and Rate Synchronization in a Phototroph-Heterotroph Microbial Consortium

dc.contributor.authorEl Moustaid, Fadouaen
dc.contributor.authorCarlson, Ross P.en
dc.contributor.authorVilla, Federicaen
dc.contributor.authorKlapper, Isaacen
dc.contributor.departmentBiological Sciencesen
dc.date.accessioned2017-09-20T18:29:28Zen
dc.date.available2017-09-20T18:29:28Zen
dc.date.issued2017-03-02en
dc.date.updated2017-09-20T18:29:28Zen
dc.description.abstractThe process of oxygenic photosynthesis is robust and ubiquitous, relying centrally on input of light, carbon dioxide, and water, which in many environments are all abundantly available, and from which are produced, principally, oxygen and reduced organic carbon. However, photosynthetic machinery can be conflicted by the simultaneous presence of carbon dioxide and oxygen through a process sometimes called photorespiration. We present here a model of phototrophy, including competition for RuBisCO binding sites between oxygen and carbon dioxide, in a chemostat-based microbial population. The model connects to the idea of metabolic pathways to track carbon and degree of reduction through the system. We find decomposition of kinetics into elementary flux modes a mathematically natural way to study synchronization of mismatched rates of photon input and chemostat turnover. In the single species case, though total biomass is reduced by photorespiration, protection from excess light exposures and its consequences (oxidative and redox stress) may result. We also find the possibility that a consortium of phototrophs with heterotrophs can recycle photorespiration byproduct into increased biomass at the cost of increase in oxidative product (here, oxygen).en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationEl Moustaid, F.; Carlson, R.P.; Villa, F.; Klapper, I. Photorespiration and Rate Synchronization in a Phototroph-Heterotroph Microbial Consortium. Processes 2017, 5, 11.en
dc.identifier.doihttps://doi.org/10.3390/pr5010011en
dc.identifier.urihttp://hdl.handle.net/10919/79311en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectphotosynthesisen
dc.subjectphotorespirationen
dc.subjectchemostat modelen
dc.subjectphototroph-heterotroph consortiumen
dc.titlePhotorespiration and Rate Synchronization in a Phototroph-Heterotroph Microbial Consortiumen
dc.title.serialProcessesen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
processes-05-00011-v2.pdf
Size:
857.6 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: