Thermal and Living Anionic Polymerization of 4-Vinylbenzyl Piperidine

TR Number

Date

2014-07-02

Journal Title

Journal ISSN

Volume Title

Publisher

The Royal Society of Chemistry

Abstract

Elevated temperatures that are often required for controlled radical polymerization processes lead to the thermal autopolymerization of 4-vinylbenzyl piperidine. In situ FTIR spectroscopy monitored 4-vinylbenzyl piperidine autopolymerization, and pseudo-first-order thermal polymerization kinetics provided observed rate constants (kobs). Arrhenius analysis determined the thermal activation energy (Ea) for 4-vinylbenzyl piperidine, revealing an activation energy requirement 80 kJ mol_1 less than styrene due to the presence of the piperidine ring. The similarities in chemical structure of styrene and 4-vinylbenzyl piperidine suggested a thermally initiated polymerization according to the Mayo mechanism; however, the piperidine substituent enabled a proposed cationic polymerization to enhance overall polymerization rates. In the absence of thermal polymerization, living anionic polymerization of 4-vinylbenzyl piperidine provided a viable strategy for achieving piperidine-containing polymers with predictable molecular weights and narrow polydispersities. This study also reports piperidine-containing polymeric precursors for subsequent alkylation to form novel piperidinium ionomers and polyelectrolytes.

Description

Keywords

Macromolecules, Polymerization, Reversible addition-fragmentation transfer, Stable free radical, Atom transfer

Citation

Schultz, A. R., Jangu, C., & Long, T. E. (2014). Thermal and living anionic polymerization of 4-vinylbenzyl piperidine. Polymer Chemistry, 5(20), 6003-6011. doi: 10.1039/C4PY00763H