A Comprehensive Three-Dimensional Analysis of the Wake Dynamics in Complex Turning Vanes

TR Number

Date

2023-12-20

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

A comprehensive computational and experimental analysis has been conducted to characterize the flow dynamics and periodic structures formed in the wake of complex turning vanes. The vane packs were designed by the StreamVane swirl distortion generator technology, a design system that can efficiently reproduce swirl distortion for compressor rig and full turbofan engine testing. StreamVanes consist of an array of turning vanes that commonly contain variations in turning angle along their span, a nonaxisymmetric profile about the centerline, and vane-to-vane intersections or junctions to accurately generate the desired distortion. In this study, vane packs are considered complex if they contain two out of three of these features, a combination seen in other turbomachinery components outside of StreamVane design. Similar to all stator vanes or rotor blades, StreamVane vane packs are constructed using a series of cross-sectional airfoil profiles with blunt trailing edges and finite thicknesses. This, in turn, introduces periodic vortex structures in the wake, commonly known as trailing edge vortex shedding. To fully understand how the dynamics and coherent wake formations within vortex shedding impact both the flow distortion and structural durability of StreamVanes, it is first necessary to characterize the corresponding wakes in three dimensions.

The current study provides an in-depth analysis to predict and measure the trailing edge vortex development using high-fidelity computational fluid dynamics and stereoscopic time-resolved particle image velocimetry experiments. Two testcase StreamVane geometries were specifically designed with complex features to evaluate their influence on the dynamics and coherence of the respective vane wakes. Fully three-dimensional, unsteady computational fluid dynamics simulations were performed using a Reynolds-Averaged Navier-Stokes solver coupled with a standard two-equation turbulence model and a hybrid, scale-resolving turbulence model. Both models predicted large-scale wake frequencies within 1—14% of experiment, with a mean difference of less than 3.2%. These comparisons indicated that lower fidelity simulations were capable of accurately capturing such flows for complex vane packs. Additionally, structural and modal analyses were conducted using finite element models to determine the correlations between dominant structural modes and dominant wake (flow) modes. The simulations predicted that vortex shedding modes generally contained frequencies 300% larger than dominant structural modes, and therefore, vortex induced vibrations were unlikely to occur. Lastly, mode decomposition methods were applied to the experimental results to extract energy ratios and reveal dynamic content across high-order wake modes. The vortex shedding modes generated more than 80% of the total wake energy for both complex vane packs, and dynamic decomposition methods revealed unique structures within the vane junction wake. In all analyses, comparisons were made between different vane parameters, such as trailing edge thickness and turning angle, where it was found that trailing edge thickness was the dominant vortex shedding parameter.

The motivation, methodology, and results of the following research is presented to better understand the wake interactions, computational predictive capabilities, and structural dynamics associated with vortex shedding from complex vane packs. Although the results directly relate to StreamVane distortion generator technology, the qualitative and quantitative comparisons between the selected methods, geometry parameters, and flow conditions can be extrapolated to modern turbomachinery components in general. Therefore, this dissertation aims to benefit distortion generator and turbomachinery designers by providing insight into the underlying physics and overall modeling techniques of the wake dynamics in highly three-dimensional, complex components.

Description

Keywords

Computational fluid dynamics, particle image velocimetry, swirl distortion generator, coherent structures, vortex shedding

Citation