Ensemble Kalman filter implementations based on shrinkage covariance matrix estimation

dc.contributor.authorNino-Ruiz, Elias D.en
dc.contributor.authorSandu, Adrianen
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2017-03-06T18:44:24Zen
dc.date.available2017-03-06T18:44:24Zen
dc.date.issued2015-11-01en
dc.description.versionPublished versionen
dc.format.extent1423 - 1439 (17) page(s)en
dc.identifier.doihttps://doi.org/10.1007/s10236-015-0888-9en
dc.identifier.issn1616-7341en
dc.identifier.issue11en
dc.identifier.urihttp://hdl.handle.net/10919/75288en
dc.identifier.volume65en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000363259600004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectOceanographyen
dc.subjectEnKFen
dc.subjectShrinkage covariance estimationen
dc.subjectBackground errorsen
dc.subjectSquare root filteren
dc.subjectDATA ASSIMILATIONen
dc.subjectERROR COVARIANCESen
dc.subjectMODELSen
dc.titleEnsemble Kalman filter implementations based on shrinkage covariance matrix estimationen
dc.title.serialOcean Dynamicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1502.00301v1.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: