SamBaS: Sampling-Based Stochastic Block Partitioning

dc.contributor.authorWanye, Franken
dc.contributor.authorGleyzer, Vitaliyen
dc.contributor.authorKao, Edwarden
dc.contributor.authorFeng, Wu-chunen
dc.date.accessioned2024-03-04T17:36:02Zen
dc.date.available2024-03-04T17:36:02Zen
dc.date.issued2024-01-25en
dc.description.abstractCommunity detection is a well-studied problem with applications in domains ranging from networking to bioinformatics. Due to the rapid growth in the volume of real-world data, there is growing interest in accelerating contemporary community detection algorithms. However, the more accurate and statistically robust methods tend to be hard to parallelize. One such method is stochastic block partitioning&#x00A0;(SBP) &#x2013; a community detection algorithm that works well on graphs with complex and heterogeneous community structure. In this paper, we present a <underline>sam</underline>pling-<underline>ba</underline>sed <underline>S</underline>BP&#x00A0;(<monospace>SamBaS</monospace>) for accelerating SBP on sparse graphs. We characterize how various graph parameters affect the speedup and result quality of community detection with <monospace>SamBaS</monospace> and quantify the trade-offs therein. To evaluate <monospace>SamBas</monospace> on real-world web graphs without known ground-truth communities, we introduce <underline>p</underline>artition <underline>q</underline>uality <underline>s</underline>core (PQS), an evaluation metric that outperforms modularity in terms of correlation with F1 score. Overall, <monospace>SamBaS</monospace> achieves speedups of up to 10&#x00D7; while maintaining result quality (and even improving result quality by over 150&#x0025; on certain graphs, relative to F1 score).en
dc.description.versionAccepted versionen
dc.format.extentPages 1-13en
dc.identifier.doihttps://doi.org/10.1109/TNSE.2024.3358301en
dc.identifier.eissn2327-4697en
dc.identifier.issn2334-329Xen
dc.identifier.issue99en
dc.identifier.urihttps://hdl.handle.net/10919/118262en
dc.identifier.volumePPen
dc.publisherIEEEen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleSamBaS: <b>Sam</b>pling-<b>Ba</b>sed <b>S</b>tochastic Block Partitioningen
dc.title.serialIEEE Transactions on Network Science and Engineeringen
dc.typeArticle - Refereeden
dc.type.otherJournal Articleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen
pubs.organisational-group/Virginia Tech/Faculty of Health Sciencesen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Feng-Preprint-TNSE-SamBaS.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: