Strategies for the Fabrication of Cellularized Micro-Fiber/Hydrogel Composites for Ligament Tissue Engineering

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Partial or complete tears of the anterior cruciate ligament (ACL) can greatly afflict quality of life and often require surgical reconstruction with autograft or allograft tissue to restore native knee biomechanical function. However, limitations exist with these treatments that include donor site pain and weakness found with autografts, and longer "ligamentization" and integration times due to the devitalization of allograft tissue. Alternatively, a tissue engineering approach has been proposed for the fabrication of patient-specific grafts that can more rapidly and completely heal after ACL reconstruction. Electrospun micro-fiber networks have been widely utilized as biomaterial scaffolds to support the growth and differentiation of mesenchymal stem cells toward many tissue lineages including ligament. However, these micro-fiber networks do not possess suitable sizes and shapes for a ligament application and cannot support cell infiltration. The objective of this work was to develop techniques to 1) rapidly cellularize micro-fiber networks, 2) assemble micro-fiber networks into cylindrical composites, 3) provide cues to mesenchymal stem cells (MSCs) to guide their differentiation toward a ligament phenotype.

The cellularization of micro-fiber networks was performed utilizing a co-electrospinning/electrospraying technique. Cells deposited within a cell culture medium solution remained where they were deposited and did not proliferate. The inclusion of space-filling hydrogel network such as collagen was necessary to reduce the density of the micro-fiber network to facilitate spreading. However, it became apparent that the incorporation of significant collagen phase was necessary for long-term MSC survival within the micro-fiber network. Next, two approaches were developed to fabricate large cylindrical, composites. The first approach utilized a co-electrospinning/electrospraying technique to generate micro-fiber/collagen composites that were subsequently rolled into cylinders. These cylindrical composites exhibited greater diameters and water weight percentages as collagen content increased. However, the high micro-fiber content of these composites was inhibitory to cell survival. In the second approach, thin layers (~5-10 fibers) of aligned electrospun PEUR fibers were encapsulated within a collagen gel and subsequently rolled the composites into cylinders. These sparse-fiber composites were nearly 98% by weight water and confocal imaging revealed the presence of sparse fiber layers (~5 fibers thick) separated by approximately 200 μm thick collagen layers. We hypothesize that the proliferation and migration of MSCs within these micro-fiber/collagen composites may not be restricted by the presence of a dense, non-manipulatable electrospun fiber network present in traditionally rolled fiber composites.

Simple model platforms were then developed to study the influence of sparse micro-fibers on MSCs differentiation within a collagen hydrogel. MSCs in the presence of the softest (5.6 MPa) micro-fibers elongated and oriented to the underlying network and exhibited greater expression of scleraxis, and α-smooth muscle actin compared to the stiffest (31 MPa) fibers. Additionally, preliminary results revealed that the incorporation of fibroblast growth factor-2 and growth and differentiation factor-5 onto micro-fibers through chemical conjugation enhanced expression of the ligamentous markers collagen I, scleraxis, and tenomodulin.

In conclusion, micro-fiber/collagen composite materials must possess sufficient space to support the infiltration and differentiation of MSCs. The strategies described in this document could be combined to fabricate large, micro-fiber/collagen composites that can support cell infiltration and provide relevant cues to guide the formation of an engineered ligament tissue.



ligament, tissue engineering, composite scaffold, electrospinning, hydrogel, mesenchymal stem cell differentiation