Mathematical modeling of macronutrient signaling in Saccharomyces cerevisiae

TR Number

Date

2020-07-08

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In eukaryotes, distinct nutrient signals are integrated in order to produce robust cellular responses to fluctuations in the environment. This process of signal integration is attributed to the crosstalk between nutrient specific signaling pathways, as well as the large degree of overlap between their regulatory targets. In the budding yeast Saccharomyces cerevisiae, these distinct pathways have been well characterized. However, the significant overlap between these pathways confounds the interpretation of the overall regulatory logic in terms of nutrient-dependent cell state determination. Here, we propose a literature-curated molecular mechanism of the integrated nutrient signaling pathway in budding yeast, focussing on carbon and nitrogen signaling. We build a computational model of this pathway to reconcile the available experimental data with our proposed molecular mechanism. We evaluate the robustness of the model fit to data with respect to the variations in the values of kinetic parameters used to calibrate the model. Finally, we use the model to make novel, experimentally testable predictions of transcription factor activities in mutant strains undergoing complex nutrient shifts. We also propose a novel framework, called BoolODE for utilizing published Boolean models to generate synthetic datasets used to benchmark the performance of algorithms performing gene regulatory network inference from single cell RNA sequencing data.

Description

Keywords

Yeast, Signaling, Mathematical Modeling, Boolean Models, RNAseq

Citation