The Space-time Structure of an Axisymmetric Turbulent Boundary Layer Ingested by a Rotor
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A low-speed, axisymmetric turbulent boundary layer under a strong adverse pressure gradient is experimentally studied for its relevance to marine applications, urban air-transportation and turbulence ingestion noise. The combined effect of lateral curvature and streamwise pressure gradient are examined on the mean flow, turbulence structure, velocity correlations and wall pressure fluctuations. Additionally, the upstream influence of a rotor operating in this flow is examined to improve the understanding of the turbulence necessary to develop advanced noise prediction tools. Measurements were made in Virginia Tech Stability tunnel documenting the flow over a 0.432-m diameter body-of-revolution comprised of a forward nose-cone, a constant diameter mid-body and a 20 degree tail-cone, at a length based Reynolds number of 1.2 million.
The principal finding of this work is the resemblance of the boundary layer to a free-shear layer where the turbulence far from the wall plays a dominant role, unlike in the canonical case of the flat-plate boundary layer. The mean flow along the tail developed inflection points in the outer regions and the associated velocity and turbulence stress profiles were self-similar with a recently proposed embedded shear layer scaling. As the mean flow decelerates downstream, the large-scale motions energize and grow along with the boundary layer thickness; However, the structure is roughly self-similar with the shear-layer scaling, emphasizing the role of the shear-layer in the large-scale structure. Additionally, the correlation structure is discussed to provide information towards the development of turbulence models and aeroacoustic predictions.
The associated wall pressure fluctuations, measured with a longitudinal array of microphones, evolved significantly downstream with the dimensional wall pressure spectra weakening by over 20-dB per Hz. However, the spectra collapsed to within 2-dB with the wall-wake scaling, where the pressure-scale is the wall shear stress, and the time-scale is derived from the boundary layer thickness and edge velocity. The success of this scaling, even in the viscous roll-off regions, suggests the increasing importance of the outer region on the near-wall turbulence and wall-pressure. Investigation of the space-time structure revealed the presence of a quasi-periodic feature with the conditional signature of a roller-eddy. The structure appeared to scale with the wall-wake scaling, and was found to convect downstream at speeds matching those at the inflection points (and outer turbulence peak). It is hypothesized that the outer region turbulence in strong adverse pressure gradient flow strongly drive the near-wall turbulence and therefore both the wall pressure and shear stress.
Subsequent measurements made with the rotor operating at the tail, using high-speed particle image velocimetry, provided the space-time structure of the inflow turbulence as a function of the rotor thrust. The impact of the rotor on the mean flow, turbulence and correlation structure in the vicinity of the rotor is discussed to supply information towards validating numerical simulations and developing turbulence models that account for the distortion due to the rotor.
This work was sponsored by the Office of Naval Research, in particular Drs. Ki-Han Kim and John Muench under grants N00014-17-1-2698 and N00014-20-1-2650.