Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds

dc.contributor.authorAluffi, P.en
dc.contributor.authorMihalcea, L. C.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2017-01-02T18:33:38Zen
dc.date.available2017-01-02T18:33:38Zen
dc.date.issued2015-11-12en
dc.description.abstractWe obtain an algorithm computing the Chern-Schwartz-MacPherson (CSM) classes of Schubert cells in a generalized flag manifold G/B. In analogy to how the ordinary divided difference operators act on Schubert classes, each CSM class of a Schubert class is obtained by applying certain Demazure-Lusztig type operators to the CSM class of a cell of dimension one less. These operators define a representation of the Weyl group on the homology of G/B. By functoriality, we deduce algorithmic expressions for CSM classes of Schubert cells in any flag manifold G/P. We conjecture that the CSM classes of Schubert cells are an effective combination of (homology) Schubert classes, and prove that this is the case in several classes of examples. We also extend our results and conjectures to the torus equivariant setting.en
dc.description.notesThis version includes the equivariant caseen
dc.identifier.doihttps://doi.org/10.1112/S0010437X16007685en
dc.identifier.urihttp://hdl.handle.net/10919/73917en
dc.relation.urihttp://arxiv.org/abs/1508.01535v2en
dc.relation.urihttp://dx.doi.org/10.1112/S0010437X16007685en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectmath.AGen
dc.subject14C17, 14N15en
dc.titleChern-Schwartz-MacPherson classes for Schubert cells in flag manifoldsen
dc.typeArticleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1508.01535v2.pdf
Size:
299.37 KB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: