The role of blood-borne factors in triggering atypical astrocytes

dc.contributor.authorGeorge, Kijana Kaariaen
dc.contributor.committeechairRobel, Stefanieen
dc.contributor.committeememberGourdie, Robert G.en
dc.contributor.committeememberOlsen, Michelle Lynneen
dc.contributor.committeememberBuczynski, Matthewen
dc.contributor.departmentGraduate Schoolen
dc.date.accessioned2022-04-06T08:00:09Zen
dc.date.available2022-04-06T08:00:09Zen
dc.date.issued2022-04-05en
dc.description.abstractMild traumatic brain injury (mTBI)/ concussion accounts for 70-90% of all reported TBI cases in the United States and can cause long-term neurological outcomes that negatively impact quality of life. Previous studies revealed that increased blood-brain barrier (BBB) leakage is correlated with poor neurological outcomes after mTBI, yet the biological mechanisms linking BBB damage to the onset of neurological deficits after mTBI are not well understood. Previously, we found that astrocytes lose expression of homeostatic proteins after mTBI, characterizing the changes in astrocytic protein expression as an "atypical astrocyte response." Yet, the upstream mechanisms that induce this atypical astrocyte response after mTBI have yet to be elucidated. In models of more severe TBI, exposure to blood-borne factors triggers astrogliosis via upregulation in markers, such as glial fibrillary acidic protein (GFAP), but how exposure to blood-borne factors affects astrocyte protein expression in the context of mTBI is not well understood. Therefore, we hypothesized that mTBI-induced BBB damage causes atypical astrocytes via exposure to blood-borne factors. To test this hypothesis, we use a mTBI mouse model, two-photon microscopy, an endothelial cell-specific genetic ablation model, and serum-free primary astrocyte cultures. Here, we found that mTBI causes BBB damage through the loss of proteins involved in maintaining the BBB's physical and metabolic barriers, and BBB damage is sustained long-term after injury. Also, we demonstrated that leakage of blood-borne factors is sufficient to trigger atypical astrocytes, and plasma exposure triggers a similar response in vitro. Overall, these findings suggest that mTBI induces long-term BBB damage, and exposure to blood-borne factors triggers the loss of key homeostatic astrocytic proteins involved in maintaining healthy neuronal function.en
dc.description.abstractgeneralMild traumatic brain injury (mTBI)/ concussion makes up 70-90% of all TBI cases reported in the United States and is commonly observed after car crashes, sports-related tackles, and blast exposure during military combat. People who experience mTBI develop debilitating long-term neurological consequences, such as sleep disturbances, depression, and dementia. Clinical data suggests mTBI causes damage to the barrier between the brain and blood, known as the blood-brain barrier (BBB). This damage has been correlated to the onset of poor neurological deficits, yet how damage to this barrier is causally linked to long-term neurological consequences remains to be fully understood. In our lab, we found that mTBI causes loss of proteins important for maintaining a healthy environment in the brain in specialized cells called astrocytes. However, the biological events that trigger the loss of protein expression in astrocytes after mTBI have yet to be fully investigated. Thus, we hypothesized that mTBI causes loss of these proteins via leakage of blood-borne factors. To test this hypothesis, we used a mTBI mouse model, two-photon microscopy, genetic manipulation, and cell cultures. In our studies, we found that mTBI triggers BBB damage via loss of proteins that make up its protective properties. Also, we demonstrated that leakage of blood-borne factors is sufficient to cause loss of astrocyte-specific proteins both in brain and cell cultures. Altogether, we show that a single mTBI is sufficient to cause loss of astrocyte-specific protein expression via exposure to blood-borne factors. These findings may point to targeting either the blood-borne factor(s) or their corresponding receptor pathways in astrocytes to halt the progression of long-term neurological deficits after mTBI.en
dc.description.degreeDoctor of Philosophyen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:34167en
dc.identifier.urihttp://hdl.handle.net/10919/109564en
dc.language.isoenen
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectastrocyteen
dc.subjectblood-brain barrieren
dc.subjectleakageen
dc.subjectastrogliosisen
dc.subjecttraumatic brain injuryen
dc.titleThe role of blood-borne factors in triggering atypical astrocytesen
dc.typeDissertationen
thesis.degree.disciplineTranslational Biology, Medicine and Healthen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.nameDoctor of Philosophyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
George_KK_D_2022.pdf
Size:
18.75 MB
Format:
Adobe Portable Document Format