From Intuition to Evidence: A Data-Driven Approach to Transforming CS Education

dc.contributor.authorAllevato, Anthony Jamesen
dc.contributor.committeechairEdwards, Stephen H.en
dc.contributor.committeememberTatar, Deborah Gailen
dc.contributor.committeememberRamakrishnan, Narenen
dc.contributor.committeememberPérez-Quiñones, Manuel A.en
dc.contributor.committeememberEvia Puerto, Carlosen
dc.contributor.departmentComputer Science and Applicationsen
dc.date.accessioned2014-03-14T20:14:10Zen
dc.date.adate2012-08-13en
dc.date.available2014-03-14T20:14:10Zen
dc.date.issued2012-07-16en
dc.date.rdate2012-08-13en
dc.date.sdate2012-07-21en
dc.description.abstractEducators in many disciplines are too often forced to rely on intuition about how students learn and the effectiveness of teaching to guide changes and improvements to their curricula. In computer science, systems that perform automated collection and assessment of programming assignments are seeing increased adoption, and these systems generate a great deal of meaningful intermediate data and statistics during the grading process. Continuous collection of these data and long-term retention of collected data present educators with a new resource to assess both learning (how well students understand a topic or how they behave on assignments) and teaching (how effective a response, intervention, or assessment instrument was in evaluating knowledge or changing behavior), by basing their decisions on evidence rather than intuition. It is only possible to achieve these goals, however, if such data are easily accessible. I present an infrastructure that has been added to one such automated grading system, Web-CAT, in order to facilitate routine data collection and access while requiring very little added effort by instructors. Using this infrastructure, I present three case studies that serve as representative examples of educational questions that can be explored thoroughly using pre-existing data from required student work. The first case study examines student time management habits and finds that students perform better when they start earlier but that offering extra credit for finishing earlier did not encourage them to do so. The second case study evaluates a tool used to improve student understanding of manual memory management and finds that students made fewer errors when using the tool. The third case study evaluates the reference tests used to grade student code on a selected assignment and confirms that the tests are a suitable instrument for assessing student ability. In each case study, I use a data-driven, evidence-based approach spanning multiple semesters and students, allowing me to answer each question in greater detail than was possible using previous methods and giving me significantly increased confidence in my conclusions.en
dc.description.degreePh. D.en
dc.identifier.otheretd-07212012-094523en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-07212012-094523/en
dc.identifier.urihttp://hdl.handle.net/10919/28352en
dc.publisherVirginia Techen
dc.relation.haspartAllevato_AJ_D_2012.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectintuitionen
dc.subjectevaluationen
dc.subjectassessmenten
dc.subjectWeb-CATen
dc.subjectevidenceen
dc.subjectDerefereeen
dc.subjectC++en
dc.subjectextra crediten
dc.subjectstudent performanceen
dc.subjectprocrastinationen
dc.subjecttime managementen
dc.subjectstudent behavioren
dc.subjectdata collectionen
dc.subjectmemory managementen
dc.subjectpointersen
dc.subjectitem response theoryen
dc.subjectreference testsen
dc.subjectJUniten
dc.subjectdifficultyen
dc.subjectdiscriminating abilityen
dc.subjectautomated gradingen
dc.subjectEclipseen
dc.subjectBIRTen
dc.subjectreportingen
dc.subjectComputer science educationen
dc.titleFrom Intuition to Evidence: A Data-Driven Approach to Transforming CS Educationen
dc.typeDissertationen
thesis.degree.disciplineComputer Science and Applicationsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Allevato_AJ_D_2012.pdf
Size:
4.78 MB
Format:
Adobe Portable Document Format