Idempotents in group rings

dc.contributor.authorMarciniak, Zbigniewen
dc.contributor.committeechairFarkas, Daniel R.en
dc.contributor.committeememberGreen, E.L.en
dc.contributor.committeememberDickman, R.F., Jr.en
dc.contributor.committeememberFeustel, Charles D.en
dc.contributor.committeememberHannsgen, Kenneth B.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2017-11-09T21:42:07Zen
dc.date.available2017-11-09T21:42:07Zen
dc.date.issued1982en
dc.description.abstractThe von Neumann finiteness problem for k[G] is still open. Kaplansky proved it in characteristic zero. He used the nonvanishing of the trace: tr(e) = 0 implies e = 0 for any idempotent e ∊ k[G]. Assume now that char k = p > 0. Now tr can vanish on nonzero idempotents. Instead, we study the lifted trace ltr. For e = e² ∊ k[G], define ltr(e) by ê(1) where ê = Σ{x ∊ G}ê(x)x lifts e. Here ê is an infinite series with |ê(x)|<sub>p</sub>→0, where each ê(x) lives in the Witt vector ring of k. We prove that ltr(e) depends on e only, it is a p-adic integer and ltr(e) = ltr(f) if f is equivalent to e. Also ltr(e) ∊ Q and ltr(e) = 0 implies e = 0 if G is polycyclic-by-finite. We conjecture that -log<sub>p</sub>|ltr(e)|<sub>p</sub> < |supp(e)|. We prove this for e central and for e = e² ∊ k[G] with |G| ≤ 30. In the last section, we give the example of an idempotent e such ath supp(f) is infinite for all f ~ e. Finally we estimate |<supp(e)>| for central idempotents e.en
dc.description.degreePh. D.en
dc.format.extentv, 85, [1] leavesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/80271en
dc.language.isoen_USen
dc.publisherVirginia Polytechnic Institute and State Universityen
dc.relation.isformatofOCLC# 9008469en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1982.M372en
dc.subject.lcshGroup ringsen
dc.titleIdempotents in group ringsen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1982.M372.pdf
Size:
3.04 MB
Format:
Adobe Portable Document Format