VTechWorks staff will be away for the Independence Day holiday from July 4-7. We will respond to email inquiries on Monday, July 8. Thank you for your patience.
 

Applications of Neutrino Physics

TR Number

Date

2014-09-02

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Neutrino physics has entered a precision era in which understanding backgrounds and systematic uncertainties is particularly important. With a precise understanding of neutrino physics, we can better understand neutrino sources. In this work, we demonstrate dependency of single detector oscillation experiments on reactor neutrino flux model. We fit the largest reactor neutrino flux model error, weak magnetism, using data from experiments. We use reactor burn-up simulations in combination with a reactor neutrino flux model to demonstrate the capability of a neutrino detector to measure the power, burn-up, and plutonium content of a nuclear reactor. In particular, North Korean reactors are examined prior to the 1994 nuclear crisis and waste removal detection is examined at the Iranian reactor. The strength of a neutrino detector is that it can acquire data without the need to shut the reactor down. We also simulate tau neutrino interactions to determine backgrounds to muon neutrino and electron neutrino measurements in neutrino factory experiments.

Description

Keywords

Neutrino, reactor, monitoring

Citation