Steepest-Entropy-Ascent Quantum Thermodynamic Modeling of Quantum Information and Quantum Computing Systems
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Quantum information and quantum computing (QIQC) systems, relying on the phenomena of superposition and entanglement, offer the potential for vast improvements in certain computations. A practical QC realization requires maintaining the stored information for time-scales long enough to implement algorithms. One primary cause of information loss is decoherence, i.e., the loss of coherence between two energy levels in a quantum system. This work attributes decoherence to dissipation occurring as the system evolves and uses steepest-entropy-ascent quantum thermodynamics (SEAQT) to predict the evolution of system state. SEAQT asserts that, at any instant of time, the system state evolves such that the rate of system entropy change is maximized while conserving system energy. With this principle, the SEAQT equation of motion is applicable to systems in any state, near or far from stable equilibrium, making SEAQT particularly well suited for predicting the dissipation occurring as quantum algorithms are implemented. In the present research, the dynamics of qubits (quantum-bits) using the SEAQT framework are first examined during common quantum gates (combinations of which form algorithms). This is then extended to modeling a system of multiple qubits implementing Shor's algorithm on a nuclear-magnetic-resonance (NMR) QC. Additionally, the SEAQT framework is used to predict experimentally observed dissipation occurring in a two-qubit NMR QC undergoing a so called quenching'' process. In addition, several methods for perturbing the density or so-called
state'' operator used by the SEAQT equation of motion subject to an arbitrary set of expectation value constraints are presented. These are then used as the basis for randomly generating states used in analyzing the dynamics of entangled, non-interacting systems within SEAQT. Finally, a reservoir interaction model is developed for general quantum systems where each system locally experiences a heat interaction with an external reservoir. This model is then used as the basis for developing a decoherence control scheme, which effectively transfers entropy out of the QIQC system as it is generated, thus, reducing the decoherence. Reservoir interactions are modeled for single qubits and the control scheme is employed in modeling an NMR QC and shown to eliminate nearly all of the noise caused by decoherence/dissipation.