A Case Study on Atmospheric Flight Mechanics Conceptual Understanding

dc.contributor.authorMartinez Soto, Karen Dinoraen
dc.contributor.committeechairPitterson, Nicoleen
dc.contributor.committeememberBairaktarova, Dianaen
dc.contributor.committeememberCase, Jennifer Margareten
dc.contributor.committeememberSiddique, Zaheden
dc.contributor.departmentEngineering Educationen
dc.description.abstractAtmospheric Flight Mechanics (AFM) is one of the cornerstones of aeronautical engineering and includes subjects like aerodynamic prediction, stability and control, dynamics, and vehicle design. These topics are critical to the success of aircraft development, so AFM is considered one of the most important foundational knowledge areas for aerospace engineering. Unfortunately, students graduating from aerospace engineering programs are often underprepared to perform in AFM jobs. This ongoing research focuses on developing a blueprint for assessing conceptual understanding of AFM concepts. Since existing literature suggests that novices and experts organize knowledge differently, comparing students' and experts' mental models can shine a light on the alternative conceptions that students retain post-instruction. As such, framing the study around synthetic mental models can be advantageous. To explore these mental models, three types of data have been collected and analyzed. Document analysis was done on course documents to identify what concept relationships were being presented to the students. Class observations were conducted to analyze how concepts are introduced to students and what relationships are highlighted by the instructor. Finally, a concept mapping activity was facilitated to study the mental models that the students built after instruction. The results show a lack of synthetization between the knowledge introduced in the classroom and students' prior knowledge which translated into student mental models that do not meet some of the expectations of the course. Moreover, this study highlights the importance of the instructor's awareness of their own expectations for learning and knowledge synthetization in the design of an AFM course.en
dc.description.abstractgeneralConceptual understanding research has often focused on how students develop their understanding of scientific concepts that are difficult to grasp. Through this research, many assessment techniques have been developed and implemented in the design of STEM courses. However, many of these techniques and implementations have been limited to K-12 or introductory engineering courses. Atmospheric Flight Mechanics (AFM) is an important part of the aerospace curriculum that has yet to be studied under the conceptual understanding lens. The goal of this study was to investigate how students develop AFM conceptual understanding using a synthetic mental model framework. This study focused on answering three questions, how are students being introduced to AFM concepts?, how do students' mental models develop throughout the semester?, and how do the students' and instructor's mental models compare?. Through the exploration of class documents, class observations, and concept mapping activities, this research found that students are having a hard time making sense of new knowledge based on their previous understanding of similar topics. By trying to integrate this new knowledge with their previous mental models, students are developing synthetic mental models that do not align with the scientific explanations of the topic. This study also found that instructors are often unaware of their own knowledge and expectations for learning which makes knowledge synthetization harder for the students. Therefore, addressing these issues during course design could make an AFM course easier to understand for students.en
dc.description.degreeDoctor of Philosophyen
dc.publisherVirginia Techen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.subjectConceptual Understandingen
dc.subjectConcept Mapsen
dc.subjectAtmospheric Flight Mechanicsen
dc.titleA Case Study on Atmospheric Flight Mechanics Conceptual Understandingen
thesis.degree.disciplineEngineering Educationen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.nameDoctor of Philosophyen


Original bundle
Now showing 1 - 1 of 1
3.71 MB
Adobe Portable Document Format