Unsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modeling

dc.contributor.authorZhao, Liangen
dc.contributor.authorChen, Fengen
dc.contributor.authorDai, Jingen
dc.contributor.authorHua, Tingen
dc.contributor.authorLu, Chang-Tienen
dc.contributor.authorRamakrishnan, Narenen
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2017-03-02T16:53:27Zen
dc.date.available2017-03-02T16:53:27Zen
dc.date.issued2014-10-28en
dc.description.abstractTwitter has become a popular data source as a surrogate for monitoring and detecting events. Targeted domains such as crime, election, and social unrest require the creation of algorithms capable of detecting events pertinent to these domains. Due to the unstructured language, short-length messages, dynamics, and heterogeneity typical of Twitter data streams, it is technically difficult and labor-intensive to develop and maintain supervised learning systems. We present a novel unsupervised approach for detecting spatial events in targeted domains and illustrate this approach using one specific domain, viz. civil unrest modeling. Given a targeted domain, we propose a dynamic query expansion algorithm to iteratively expand domain-related terms, and generate a tweet homogeneous graph. An anomaly identification method is utilized to detect spatial events over this graph by jointly maximizing local modularity and spatial scan statistics. Extensive experiments conducted in 10 Latin American countries demonstrate the effectiveness of the proposed approach.en
dc.description.versionPublished versionen
dc.format.extent12 pagesen
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0110206en
dc.identifier.issn1932-6203en
dc.identifier.issue10en
dc.identifier.urihttp://hdl.handle.net/10919/75215en
dc.identifier.volume9en
dc.language.isoenen
dc.publisherPLOSen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000343943100022&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectmediaen
dc.subjectscanen
dc.titleUnsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modelingen
dc.title.serialPLOS ONEen
dc.typeArticle - Refereeden
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Unsupervised spatial event detection in targeted domains with applications to civil unrest modeling.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: