Unsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modeling
dc.contributor.author | Zhao, Liang | en |
dc.contributor.author | Chen, Feng | en |
dc.contributor.author | Dai, Jing | en |
dc.contributor.author | Hua, Ting | en |
dc.contributor.author | Lu, Chang-Tien | en |
dc.contributor.author | Ramakrishnan, Naren | en |
dc.contributor.department | Computer Science | en |
dc.date.accessioned | 2017-03-02T16:53:27Z | en |
dc.date.available | 2017-03-02T16:53:27Z | en |
dc.date.issued | 2014-10-28 | en |
dc.description.abstract | Twitter has become a popular data source as a surrogate for monitoring and detecting events. Targeted domains such as crime, election, and social unrest require the creation of algorithms capable of detecting events pertinent to these domains. Due to the unstructured language, short-length messages, dynamics, and heterogeneity typical of Twitter data streams, it is technically difficult and labor-intensive to develop and maintain supervised learning systems. We present a novel unsupervised approach for detecting spatial events in targeted domains and illustrate this approach using one specific domain, viz. civil unrest modeling. Given a targeted domain, we propose a dynamic query expansion algorithm to iteratively expand domain-related terms, and generate a tweet homogeneous graph. An anomaly identification method is utilized to detect spatial events over this graph by jointly maximizing local modularity and spatial scan statistics. Extensive experiments conducted in 10 Latin American countries demonstrate the effectiveness of the proposed approach. | en |
dc.description.version | Published version | en |
dc.format.extent | 12 pages | en |
dc.identifier.doi | https://doi.org/10.1371/journal.pone.0110206 | en |
dc.identifier.issn | 1932-6203 | en |
dc.identifier.issue | 10 | en |
dc.identifier.uri | http://hdl.handle.net/10919/75215 | en |
dc.identifier.volume | 9 | en |
dc.language.iso | en | en |
dc.publisher | PLOS | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000343943100022&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | media | en |
dc.subject | scan | en |
dc.title | Unsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modeling | en |
dc.title.serial | PLOS ONE | en |
dc.type | Article - Refereed | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/Computer Science | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Unsupervised spatial event detection in targeted domains with applications to civil unrest modeling.pdf
- Size:
- 1.13 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
License bundle
1 - 1 of 1
- Name:
- VTUL_Distribution_License_2016_05_09.pdf
- Size:
- 18.09 KB
- Format:
- Adobe Portable Document Format
- Description: