Characterizing major agricultural land change trends in the Western Corn Belt
dc.contributor.author | Shao, Yang | en |
dc.contributor.author | Taff, Gregory N. | en |
dc.contributor.author | Ren, Jie | en |
dc.contributor.author | Campbell, James B. Jr. | en |
dc.contributor.department | Geography | en |
dc.date.accessioned | 2018-02-04T19:18:11Z | en |
dc.date.available | 2018-02-04T19:18:11Z | en |
dc.date.issued | 2016-12-01 | en |
dc.description.abstract | In this study we developed annual corn/soybean maps for the Western Corn Belt within the United States using multi-temporal MODIS NDVI products from 2001 to 2015 to support long-term cropland change analysis. Based on the availability of training data (cropland data layer from the USDA-NASS), we designed a cross-validation scheme for 2006–2015 MODIS data to examine the spatial generalization capability of a neural network classifier. Training data points were derived from a three-state subregion consisting of North Dakota, Nebraska, and Iowa. Trained neural networks were applied to the testing sub-region (South Dakota, Kansas, Minnesota, and Missouri) to generate corn/soybean maps. Using a default threshold value (neural network output signalP0.5), the neural networks performed well for South Dakota and Minnesota. Overall accuracy was higher than 80% (kappa > 0.55) for all testing years from 2006 to 2015. However, we observed high variation of classification performance for Kansas (overall accuracy: 0.71–0.82) and Missouri (overall accuracy: 0.65–0.77) for various testing years. We developed a threshold-moving method that decreases/increases threshold values of neural network output signals to match MODIS-derived corn/soybean acreage with the NASS acreage statistics. Over 70% of testing states and years showed improved classification performance compared to the use of a default 0.5 threshold. The largest improvement of kappa value was about 0.08. This threshold-moving method was used to generate MODIS-based annual corn/soybean map products for 2001–2015. A non-parametric Mann-Kendall test was then used to identify areas that showed significant (p < 0.05) upward/downward trends. Areas showing fast increase of corn/soybean intensities were mainly located in North Dakota, South Dakota, and the west portion of Minnesota. The highest annual increase rate for a 5-km moving window was about 6.8%. | en |
dc.description.version | Published version | en |
dc.format.extent | 116 - 125 (10) page(s) | en |
dc.identifier.doi | https://doi.org/10.1016/j.isprsjprs.2016.10.009 | en |
dc.identifier.eissn | 1872-8235 | en |
dc.identifier.issn | 0924-2716 | en |
dc.identifier.orcid | Campbell, JB [0000-0002-2617-7272] | en |
dc.identifier.uri | http://hdl.handle.net/10919/82006 | en |
dc.identifier.volume | 122 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000390719600009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Technology | en |
dc.subject | Geography, Physical | en |
dc.subject | Geosciences, Multidisciplinary | en |
dc.subject | Remote Sensing | en |
dc.subject | Imaging Science & Photographic Technology | en |
dc.subject | Physical Geography | en |
dc.subject | Geology | en |
dc.subject | Cropland mapping | en |
dc.subject | Neural network | en |
dc.subject | Threshold-moving | en |
dc.subject | MODIS | en |
dc.subject | TIME-SERIES DATA | en |
dc.subject | CENTRAL GREAT-PLAINS | en |
dc.subject | NEURAL-NETWORK | en |
dc.subject | UNITED-STATES | en |
dc.subject | NDVI DATA | en |
dc.subject | CROP CLASSIFICATION | en |
dc.subject | AREA ESTIMATION | en |
dc.subject | MODIS DATA | en |
dc.subject | ALGORITHMS | en |
dc.subject | PERFORMANCE | en |
dc.title | Characterizing major agricultural land change trends in the Western Corn Belt | en |
dc.title.serial | ISPRS Journal of Photogrammetry And Remote Sensing | en |
dc.type | Article - Refereed | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Natural Resources & Environment | en |
pubs.organisational-group | /Virginia Tech/Natural Resources & Environment/CNRE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Natural Resources & Environment/Geography | en |
pubs.organisational-group | /Virginia Tech/Natural Resources & Environment/Geography/Geography T&R faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0924271616304804-main.pdf
- Size:
- 1.98 MB
- Format:
- Adobe Portable Document Format
- Description:
- Publisher's Version
License bundle
1 - 1 of 1
- Name:
- VTUL_Distribution_License_2016_05_09.pdf
- Size:
- 18.09 KB
- Format:
- Adobe Portable Document Format
- Description: