L2-Indices for Perturbed Dirac Operators on Odd Dimensional Open Complete Manifolds

dc.contributor.authorGajdzinski, Cezaryen
dc.contributor.committeechairHaskell, Peter E.en
dc.contributor.committeememberZweifel, Paul F.en
dc.contributor.committeememberMurray, M. M.en
dc.contributor.committeememberHagedorn, George A.en
dc.contributor.committeememberKlaus, Martinen
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T21:22:10Zen
dc.date.adate2005-10-24en
dc.date.available2014-03-14T21:22:10Zen
dc.date.issued1994-05-03en
dc.date.rdate2005-10-24en
dc.date.sdate2005-10-24en
dc.description.abstractFor perturbations of the Callias and Anghel type the L2-index of the perturbed Dirac operator on a Spin c -manifold is realized as the result of pairing an element in K -homology with an element of compactly supported K -cohomology. This is achieved by putting the problem of calculating the Fredholm index of the perturbed Dirac operator in the framework of KK-theory and using the identification of K-groups with KK-groups. The formula for the Fredholm index is given in terms of topological data of the Spin c-manifold and the structure of the perturbation.en
dc.description.degreePh. D.en
dc.format.extentiv, 78 leavesen
dc.format.mediumBTDen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-10242005-174011en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-10242005-174011/en
dc.identifier.urihttp://hdl.handle.net/10919/40151en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartLD5655.V856_1994.G353.pdfen
dc.relation.isformatofOCLC# 30751566en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1994.G353en
dc.subject.lcshElliptic operatorsen
dc.subject.lcshManifolds (Mathematics)en
dc.titleL2-Indices for Perturbed Dirac Operators on Odd Dimensional Open Complete Manifoldsen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1994.G353.pdf
Size:
2.02 MB
Format:
Adobe Portable Document Format