Geometry of Fractal Squares
dc.contributor.author | Roinestad, Kristine A. | en |
dc.contributor.committeechair | Haskell, Peter E. | en |
dc.contributor.committeemember | Rossi, John F. | en |
dc.contributor.committeemember | Day, Martin V. | en |
dc.contributor.committeemember | Thomson, James E. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T20:09:42Z | en |
dc.date.adate | 2010-04-29 | en |
dc.date.available | 2014-03-14T20:09:42Z | en |
dc.date.issued | 2010-04-12 | en |
dc.date.rdate | 2010-04-29 | en |
dc.date.sdate | 2010-04-15 | en |
dc.description.abstract | This paper will examine analogues of Cantor sets, called fractal squares, and some of the geometric ways in which fractal squares raise issues not raised by Cantor sets. Also discussed will be a technique using directed graphs to prove bilipschitz equivalence of two fractal squares. | en |
dc.description.degree | Ph. D. | en |
dc.identifier.other | etd-04152010-113009 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-04152010-113009/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/26883 | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | Roinestad_KA_D_2010.pdf | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Self-Similarity | en |
dc.subject | Bilipschitz Equivalences | en |
dc.subject | Fractal Squares | en |
dc.subject | Cantor Sets | en |
dc.title | Geometry of Fractal Squares | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1