Canopy light environment influences apple leaf physiology and fruit quality

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Several experiments were conducted to determine: the influence of canopy position, girdling, and defoliation on nectar production; whether instantaneous light measurements yield reliable estimates of cumulative seasonal light levels within the canopy; and the effect of the canopy light environment on spur leaf physiology and fruit quality. Defoliation of nongirdled flowering spurs had no effect on nectar production or composition, while defoliation of girdled spurs induced nectar sugar concentration by 24%. Canopy position had no influence on nectar production or composition. At full bloom there were differences in photosynthetic potential of spur leaves from different canopy positions. Exterior leaves had a greater maximum photosynthetic rate and an unique photosynthetic light response curve compared to the intermediate and interior leaves. Differences among positions persisted throughout the season. Stomatal conductance, specific leaf weight, dark respiration, and light levels were greater for the exterior leaves throughout the season.

Instantaneous light measurements made on a single uniformly overcast day after the canopy was fully-developed (average of four times during the day) provided reliable estimates (predictive R2 > 0.90, n = 30) of total cumulative seasonal photosynthetic photon density (PPD). There was a I-to-l relationship between instantaneous and cumulative PPD after canopy development was complete providing both measures were expressed as a percentage. The relationships were equal over multiple dates for two consecutive years. Cloudless conditions provided poor estimates (predictive R2 = 0.49 to 0.80, n = 30). Light environment and harvest date influenced fruit quality characteristics within the canopy. Fruit red color, intensity of red color, and soluble solids concentration were all positively related to light level, with the highest R 2 on the early harvest dates. Fruit weight, firmness, length/ diameter ratio, starch index, and seed number were not consistently influenced by the light environment. The number of hours above an average photosynthetic photon flux density threshold of 250 I-£mol. m-2• sec'! explained slightly more of the variation in fruit quality characteristics than any other expressions of light.