Assessment of Recycled and Manufactured Adsorptive Materials for Phosphate Removal from Municipal Wastewater

dc.contributor.authorDrummond, Dejaen
dc.contributor.authorBrink, Shannonen
dc.contributor.authorBell, Natashaen
dc.date.accessioned2024-03-12T13:19:32Zen
dc.date.available2024-03-12T13:19:32Zen
dc.date.issued2024en
dc.description.abstractElevated concentrations of phosphorus (P) and other nutrients common in wastewater treatment plant (WWTP) effluent have been shown to contribute to the proliferation of harmful algal blooms, which may lead to fish kills related to aquatic hypoxia. Increased understanding of the negative effects associated with elevated P concentrations have prompted more strict regulation of WWTP effluent in recent years. The use of low-cost and potentially regenerative adsorptive phosphate filters has the potential to decrease P concentrations in WWTP effluent released to natural waters. This research focuses on assessing the capacities of recycled concrete aggregate (RCA), expanded slate, and expanded clay to remove phosphate from P-amended WWTP effluent. Results from a flow-through column study indicate that RCA consistently removed an average of 97% of phosphate over 20 weeks of continuous flow at an 8-hour hydraulic retention time (HRT). Expanded clay removed an average of 63% of introduced phosphate but decreased in removal capacity from 91 to 42% over the 20-week duration. Sorption data from batch studies were fitted to Langmuir models and RCA was shown to have the highest maximum sorption capacity (6.16 mg P/g), followed by expanded clay (3.65 mg P/g). RCA and expanded clay are promising options for use in passive filters for further reduction of phosphate from WWTP effluent.en
dc.description.versionAccepted versionen
dc.format.extentPages 14-23en
dc.format.mimetypeapplication/pdfen
dc.identifier.issue179en
dc.identifier.orcidBell, Natasha [0000-0002-1256-8045]en
dc.identifier.urihttps://hdl.handle.net/10919/118309en
dc.language.isoenen
dc.publisherUCOWRen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectLangmuir modelen
dc.subjectpassive filteren
dc.subjectsorptionen
dc.subjecttreatmenten
dc.titleAssessment of Recycled and Manufactured Adsorptive Materials for Phosphate Removal from Municipal Wastewateren
dc.title.serialJournal of Contemporary Water Research & Educationen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dcterms.dateAccepted2024-10-25en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Agriculture & Life Sciencesen
pubs.organisational-group/Virginia Tech/Agriculture & Life Sciences/Biological Systems Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Agriculture & Life Sciences/CALS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Drummond et al_Proof.pdf
Size:
767.35 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: