VTechWorks staff will be away for the Independence Day holiday from July 4-7. We will respond to email inquiries on Monday, July 8. Thank you for your patience.
 

Viability of Viruses in Suspended Aerosols and Stationary Droplets as a Function of Relative Humidity and Media Composition

TR Number

Date

2020-05-01

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The transmission of some infectious diseases requires that pathogens can survive (i.e., remain infectious) in the environment, outside the host. The viability of pathogens that are immersed in aerosols and droplets is affected by factors such as relative humidity (RH) and the chemical composition of the liquid media, but the effects of these stressors on the viability of viruses have not been extensively studied. The overall objective of this work was to investigate the effects of RH and media composition on the viability of viruses in suspended aerosols and stationary droplets. We used a custom rotating drum to study the viability of airborne 2009 pandemic influenza A(H1N1) virus across a wide range of RHs. Viruses in culture medium supplemented with material from the apical surface of differentiated primary human airway epithelial cells remained equally infectious for 1 hour at all RH levels tested. We further investigated the viability of two model viruses, MS2 and Φ6, in suspended aerosols and stationary droplets consisting of culture media. Contrary to the results for influenza virus, we observed a U-shaped viability pattern against RH, where viruses retained their viability at low and extreme high RHs, but decayed significantly at intermediate to high RHs. By characterizing the droplet evaporation kinetics, we demonstrated that RH mediated the evaporation rate of droplets, induced changes in solute concentrations, and modulated the cumulative dose of solutes to which viruses were exposed as droplets evaporated. We proposed that the decay of viruses in droplets follows disinfection kinetics. Lastly, we manipulated the chemical composition of media to explore the stability of viruses as a function of pH and salt, protein, and surfactant concentrations. Results suggested that the effects of salt and surfactant were RH and strain-dependent. Acidic and basic media effectively inactivated enveloped virus. Protein had protective effect on both non-enveloped and enveloped viruses. Results from this work has advanced the understanding of virus viability in the environment and has significant implications for understanding infectious disease transmission.

Description

Keywords

virus, viability, infectious disease, aerosols, droplets, relative humidity, influenza

Citation