Fairness in machine learning-based hand load estimation: A case study on load carriage tasks

dc.contributor.authorRahman, Arafaten
dc.contributor.authorLim, Solen
dc.contributor.authorChung, Seokhyunen
dc.date.accessioned2026-02-02T20:30:48Zen
dc.date.available2026-02-02T20:30:48Zen
dc.date.issued2026-01en
dc.description.abstractPredicting external hand load from sensor data is essential for ergonomic exposure assessments, as obtaining this information typically requires direct observation or supplementary data. While machine learning can estimate hand load from posture or force data, we found systematic bias tied to biological sex, with predictive disparities worsening in imbalanced training datasets. To address this, we developed a fair predictive model using a Variational Autoencoder with feature disentanglement, which separates sex-agnostic from sex-specific motion features. This enables predictions based only on sex-agnostic patterns. Our proposed algorithm outperformed conventional machine learning models, including k-Nearest Neighbors, Support Vector Machine, and Random Forest, achieving a mean absolute error of 3.42 and improving fairness metrics like statistical parity and positive and negative residual differences, even when trained on imbalanced sex datasets. These results underscore the importance of fairness-aware algorithms in avoiding health and safety disadvantages for specific worker groups in the workplace.en
dc.description.versionAccepted versionen
dc.format.extent15 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 104642 (Article number)en
dc.identifier.doihttps://doi.org/10.1016/j.apergo.2025.104642en
dc.identifier.eissn1872-9126en
dc.identifier.issn0003-6870en
dc.identifier.orcidLim, Sol [0000-0001-5569-9312]en
dc.identifier.otherS0003-6870(25)00178-4 (PII)en
dc.identifier.pmid41005257en
dc.identifier.urihttps://hdl.handle.net/10919/141113en
dc.identifier.volume130en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/41005257en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectFairnessen
dc.subjectAlgorithmic biasen
dc.subjectGait kinematicsen
dc.subjectMachine learningen
dc.subjectLoad carriageen
dc.titleFairness in machine learning-based hand load estimation: A case study on load carriage tasksen
dc.title.serialApplied Ergonomicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2025-09-11en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Industrial and Systems Engineeringen
pubs.organisational-groupVirginia Tech/Faculty of Health Sciencesen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
WMSDs___bias_mitigation.pdf
Size:
7.15 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: