VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Analysis, finite element approximation, and computation of optimal and feedback flow control problems

dc.contributor.authorLee, Hyung-Chunen
dc.contributor.committeechairGunzburger, Max D.en
dc.contributor.committeememberBurns, John A.en
dc.contributor.committeememberCliff, Eugene M.en
dc.contributor.committeememberLin, Taoen
dc.contributor.committeememberPeterson, Janet S.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T21:09:55Zen
dc.date.adate2006-03-02en
dc.date.available2014-03-14T21:09:55Zen
dc.date.issued1994-07-05en
dc.date.rdate2006-03-02en
dc.date.sdate2006-03-02en
dc.description.abstractThe analysis, finite element approximation, and numerical simulation of some control problems associated with fluid flows are considered. First, we consider a coupled solid/fluid temperature control problem. This optimization problem is motivated by the desire to remove temperature peaks, i.e., "hot spots", along the bounding surface of containers of fluid flows. The heat equation of the solid container is coupled to the energy equation for the fluid. Control is effected by adjustments to the temperature of the fluid at the inflow boundary. We give a precise statement of the mathematical model, prove the existence and uniqueness of optimal solutions, and derive an optimality system. We study a finite element approximation and provide rigorous error estimates for the error in the approximate solution of the optimality system. We then develop and implement an iterative algorithm to compute the approximate solution. Second, a computational study of the feedback control of the magnitude of the lift in flow around a cylinder is presented. The uncontrolled flow exhibits an unsymmetric Karman vortex street and a periodic lift coefficient. The size of the oscillations in the lift is reduced through an active feedback control system. The control used is the injection and suction of fluid through orifices on the cylinder; the amount of fluid injected or sucked is determined, through a simple feedback law, from pressure measurements at stations along the surface of the cylinder. The results of some computational experiments are given; these indicate that the simple feedback law used is effective in reducing the size of the oscillations in the lift. Finally, some boundary value problems which arise from a feedback control problem are considered. We give a precise statement of the mathematical problems and then prove the existence and uniqueness of solutions to the boundary value problems for the Laplace and Stokes equations by studying the boundary integral equation method.en
dc.description.degreePh. D.en
dc.format.extentx, 114 leavesen
dc.format.mediumBTDen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-03022006-093406en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-03022006-093406/en
dc.identifier.urihttp://hdl.handle.net/10919/37450en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartLD5655.V856_1994.L44.pdfen
dc.relation.isformatofOCLC# 31183748en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1994.L44en
dc.subject.lcshFeedback control systems -- Mathematical modelsen
dc.subject.lcshFluid dynamics -- Mathematical modelsen
dc.titleAnalysis, finite element approximation, and computation of optimal and feedback flow control problemsen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1994.L44.pdf
Size:
13.34 MB
Format:
Adobe Portable Document Format
Description: