Stereochemical aspects of virginiamycin biosynthesis: biosynthesis of antibiotic A33853

TR Number

Date

1989

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Polytechnic Institute and State University

Abstract

The biochemical pathways for the formation of the unusual amino acids found in virginiamycin M₁ and A33853 were investigated. Specifically tritiated and carbon 14 labeled serines were incorporated into virginiamycin M₁. (2S)-serine and (2S,3R)-[3-³H] serine were found to be precursors, thus giving evidence of stereochemical control in the formation of the oxazole moiety. This information allowed for postulation of a ring closure pathway. Stereochemical investigations were also carried out on the dehydroproline unit and it was shown that both (R) and (S) prolines were incorporated into the dehydroproline unit. (2S,3R)-[3-³H] proline was synthesized and upon incorporation lost the (3-³H) label as evidence of stereochemical control in the formation of the dehydroproline unit from a saturated precursor.

The basic biosynthetic origins of A33853 were investigated by feeding of D-[U-¹⁴C] glucose, sodium [U-¹⁴C] acetate, (S)-[U-¹⁴C] lysine, (S)-[U-¹⁴C] aspartic acid, [carboxyl-¹⁴C] anthranilic acid, and (S)-[5-³H] tryptophan. D-[U-¹⁴C]. Glucose and (S)-[U-¹⁴C] lysine appeared to be the main precursors. ¹³C¹⁵N lysine was synthesized and used to examine the ring closure of the 3-hydroxypicolinic amide ring in virginiamycin S₁.

Description

Keywords

Citation