Physiological Traits and Quantitative Trait Loci Associated with Nitrogen Use Efficiency in Soft Red Winter Wheat

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Development of winter wheat (Triticum aestivum L.) cultivars capable of more efficient uptake and utilization of applied nitrogen (N) has the potential to increase grower profitability and reduce negative environmental consequences associated with N lost from the plant-soil system. The first study sought to evaluate genotypic variation for N use efficiency (NUE) and identify lines consistently expressing high or low NUE under two or more N rates in a total of 51 N-environments. The results indicated that significant genotype by N rate interactions were frequently observed when trials utilized at least three N rates and identified wheat lines with high and stable yield potential that varied in performance under low N conditions. In addition, NUE was associated with above-ground biomass at physiological maturity were found to be both highly heritable across multiple N supplies. In the second study, two bi-parental mapping populations having a common low ('Yorktown') and two high (VA05W-151 and VA09W-52) NUE parents were characterized to dissect the genetics underlying N response. The populations were evaluated in eight N-environments and genotyped using single-nucleotide polymorphism data derived from a genotyping-by-sequencing protocol to identify quantitative trait loci (QTL) associated with high NUE. Six QTL for NUE were identified on chromosomes 1D, 2D, 4A, 6A, 7A, and 7D that were associated with N use efficiency. The QTL on 2D and 4A co-localized with known loci governing photoperiod sensitivity and resistance to Fusarium head blight (caused by the fungal pathogen Fusarium graminearum Schwabe), respectively. Three of the identified QTL (6A, 7A, and 7D) were associated with NUE in previous investigations, while the QTL on 1D was novel. The final experiment employed a small panel of soft red winter wheat lines to study the effects of photoperiod alleles on chromosome 1D (Ppd-D1) on yield-related traits under three or five N rates that were variably split over two growth stages in eight environments. The results validated the effect of a photoperiod sensitive allele (Ppd-D1b) that was associated with increased grain yield across N rates in half of the Virginia testing environments and under low N rates in all Ohio testing sites at the expense of grain N content. Yield advantages conferred by the Ppd-D1b allele were attributable to increased floret fertility and kernel number per spike. The findings from these studies have direct application for winter wheat breeding programs targeting NUE improvements.



Wheat, Nitrogen, Nitrogen Use Efficiency, QTL Mapping, Plant Physiology