VTechWorks staff will be away for the winter holidays until January 5, 2026, and will respond to requests at that time.
 

Back stable Schubert calculus

dc.contributor.authorLam, Thomasen
dc.contributor.authorLee, Seung Jinen
dc.contributor.authorShimozono, Mark M.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2021-07-29T18:06:01Zen
dc.date.available2021-07-29T18:06:01Zen
dc.date.issued2021-05en
dc.description.abstractWe study the back stable Schubert calculus of the infinite flag variety. Our main results are: - a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part; - a novel definition of double and triple Stanley symmetric functions; - a proof of the positivity of double Edelman-Greene coefficients generalizing the results of Edelman-Greene and Lascoux-Schutzenberger; - the definition of a new class of bumpless pipedreams, giving new formulae for double Schubert polynomials, back stable double Schubert polynomials, and a new form of the Edelman-Greene insertion algorithm; - the construction of the Peterson subalgebra of the infinite nilHecke algebra, extending work of Peterson in the affine case; - equivariant Pieri rules for the homology of the infinite Grassmannian; - homology divided difference operators that create the equivariant homology Schubert classes of the infinite Grassmannian.en
dc.description.notesT.L. was supported by NSF DMS-1464693. S. J. Lee was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1C1C1003473). M.S. was supported by NSF DMS-1600653.en
dc.description.sponsorshipNSFNational Science Foundation (NSF) [DMS-1464693, DMS-1600653]; National Research Foundation of Korea (NRF) - Korean government (MSIT) [2019R1C1C1003473]en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1112/S0010437X21007028en
dc.identifier.eissn1570-5846en
dc.identifier.issn0010-437Xen
dc.identifier.issue5en
dc.identifier.urihttp://hdl.handle.net/10919/104443en
dc.identifier.volume157en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleBack stable Schubert calculusen
dc.title.serialCompositio Mathematicaen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.dcmitypeStillImageen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
back-stable-schubert-calculus.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format
Description:
Published version