Synthesis and Characterization of Amorphous Cycloaliphatic Copolyesters with Novel Structures and Architectures

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

A series of random and amorphous copolyesters containing different cycloaliphatic rings within the polymer chains were prepared by melt polycondensaton of difunctional monomers (diesters and diols) in the presence of a catalyst. These polyesters were characterized by nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), tensile tests and/or dynamic mechanical analysis (DMA). The copolyester based on dimethyl bicyclo[2.2.2]octane-1,4-dicarboxylate (DMCD-2) was observed to have a higher Tg, about 115ºC, than the other copolyesters with the same compositions in this study. For copolyesters containing different compositions of dimethyl-1,4-cyclohexane dicarboxylate (DMCD) and DMCD-2, the Tg increased linearly with the increase of DMCD-2 mole content. DMA showed that all of the cycloaliphatic copolyesters had secondary relaxations, resulting from conformational transitions of the cyclohexylene rings. The polyester based on DMCD-3 in the hydrolytic tests underwent the fastest hydrolytic degradation among these samples.

A new triptycene diol (TD) was synthesized and incorporated into a series of cycloaliphatic copolyester backbones by melt condensation polymerization. Straight chain aliphatic spacers, including ethylene glycol (EG), 1,4-butanediol (BD) and 1,6-hexanediol (HD), were used as co-diols to explore their effects on polyester properties.

An analogous series of non-triptycene copolyesters based on various hydroxyethylated bisphenols were also prepared for comparison. The results revealed that the TD-containing polymers had higher thermal stability and higher Tg's than the corresponding non-TD analogs. For TD-containing copolyesters, the mechanical properties were found to be dependent on the types and compositions of the co-diols. A 1,4-butanediol-based triptycene copolyester was observed to have a significantly increased Tg and modulus while maintaining high elongation at ambient temperature. Furthermore, it was demonstrated that the triptycene polyester exhibited higher Tg and modulus than those containing bisphenol derivatives. However, all of the 1,4-butanediol based copolyesters were brittle and had comparable moduli at low temperatures (-25°C or -40 °C).

Melt polycondensation was also used to prepare a series of all-aliphatic block and random copolyesters including the following aliphatic monomers: trans-DMCD, DMCD-2, neopentyl glycol (NPG), diethylene glycol (DEG) and dimethyl succinate (DMS). The polymer compositions were determined by 1H NMR, and the molecular weights were determined using SEC. The polyesters were also characterized by TGA, DSC, DMA and tensile tests. Phase separation was not observed in these block copolyesters. However, the block copolyester containing DMCD-2 and NPG was observed to have a higher Tg than the block copolyester based on trans-DMCD and NPG. In addition, these block copolyesters were found to have better mechanical properties than the corresponding random copolyesters.

cycloaliphatic monomers, structure-property relationship, glass transition temperature, melt-phase polymerization, amorphous copolyesters