Advanced Computing and Sensing to Improve Mine Fire Characterization and Response

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


After fire is discovered in an underground coal mine, a decision must be made to mitigate fire consequences. The decision should be made based on existing conditions, with the goal of increasing the probability of fire extinguishing without compromising the health and safety of the firefighting personnel. However, the determination of fire conditions can be difficult due to coarse in-situ measurements, fire hazards, and the large domains of interest. Additionally, CFD and network models used for predicting fire conditions are computationally expensive with long simulation processing times for informing real-time decision making. A new generalized procedure to design artificial neural networks (ANNs) capable of making predictions of fire conditions, performing hazard/risk assessment, and providing useful information to the firefighters is presented and applied to different underground coal mine fire scenarios. The feed-forward ANNs were developed to classify fires so as to provide the best firefighting decision and determine useful information in real time, such as response time and fire size. The networks were trained to make predictions on different mine locations and to use only available and measurable information in underground coal mines as inputs. The data used for training and testing the networks was generated using high-fidelity CFD and network fire simulations. Additionally, this research presents the applicability of optical fiber sensing technology for continuous, distributed, and real-time sensing. This new technology could be used for collection of input parameters during ongoing fires, leading to improvement of the prediction performance of the ANNs developed. Finally, a new approach to simulate firefighting foam flow through gob areas is proposed and tested using experimental results obtained from a scaled down experimental setup.



ANN neural network, mine fire classification, mine firefighters, Computational fluid dynamics, mine fire simulation