Emissions of Phthalate Plasticizer from Polymeric Building Materials


YingXu.pdf (1.36 MB)
Downloads: 1651

TR Number




Journal Title

Journal ISSN

Volume Title


Virginia Tech


Modern indoor environments contain a vast array of contaminating sources. Emissions from these sources produce contaminant concentrations that are substantially higher indoors than outside. Because we spend most of our time indoors, exposure to indoor pollutants may be orders-of-magnitude greater than that experienced outdoors. Phthalate esters have been recognized as major indoor pollutants. They are mainly used as plasticizers to enhance the flexibility of polyvinylchloride (PVC) products, as well as in humectants, emollients, and antifoaming agents. Phthalates are found in a wide range of consumer products including floor and wall coverings, car interior trim, floor tiles, gloves, footwear, insulation on wiring, and artificial leather. Because these phthalate additives are not chemically bound to the polymer matrix, slow emission from the products to the surrounding air or other media usually occurs.

Biomonitoring data suggest that over 75% of the U.S. population is exposed to phthalates. The ubiquitous exposure to phthalates is of concern because toxicological investigations have demonstrated considerable adverse health effects of phthalates and their metabolites. Studies have shown that exposure to phthalates results in profound and irreversible changes in the development of the reproductive tract, especially in males, raising the possibility that phthalate exposures could be the leading cause of reproductive disorders in humans. In addition, effects such as increases in prenatal mortality, reduced growth and birth weight, skeletal, visceral, and external malformations are possibly associated with phthalate exposure. Epidemiologic studies in children also show associations between phthalate exposure in the home and the risk of asthma and allergies.

Given the ubiquitous nature of phthalates in the environment and the potential for adverse human health impacts, there is a critical need to understand indoor emissions of phthalates and to identify the most important sources and pathways of exposure.

In this study, a model that integrates the fundamental mechanisms governing emissions of semi-volatile organic compounds (SVOCs) from polymeric materials and their subsequent interaction with indoor surfaces and airborne particles was developed. The emissions model is consistent with analogous mechanistic models that predict emission of volatile organic compounds (VOCs) from building materials. Reasonable agreement between model predictions and gas-phase di-2-ethylhexyl phthalate (DEHP) concentrations was achieved for data collected in a previously published experimental study that measured emissions of DEHP from vinyl flooring in two very different chambers. The analysis showed that while emissions of highly volatile VOCs are subject to “internal“ control (through the material-phase diffusion coefficient), emissions of the very low volatility SVOCs are subject to “external“– control (through partitioning into the gas phase, the convective mass transfer coefficient, and adsorption onto interior surfaces).

Because of the difficulties associated with sampling and analysis of SVOCs, only a few chamber studies quantifying their emissions from building materials and consumer products are available. To more rigorously validate the SVOCs emission model and more completely understand the mechanisms governing the release of phthalate from polymeric building materials, the emission of DEHP from vinyl flooring was studied for up to 140 days in a specially-designed stainless steel chamber. In the duplicate chamber study, the gas-phase concentration in the chamber increased slowly and reached a steady state level of 0.9 µg/m3 after 30 days. By increasing the area of vinyl flooring and decreasing that of the stainless steel surface in the chamber, the time to reach steady state was significantly reduced, compared to the previous study (1 month vs. 5 months). The adsorption isotherm of DEHP on the interior stainless steel chamber surface was explicitly measured using two different methods (solvent extraction and thermal desorption). Strong adsorption of DEHP onto the stainless steel surface was observed and found to follow a simple linear relationship. In addition, parameters measured in the experiments were then applied in the fundamental SVOCs emission model. Good agreement was obtained between the predictions of the model and the gas-phase DEHP chamber concentrations, without resorting to fitting of model parameters.

These chamber studies have shown that the tendency of SVOCs to adsorb strongly to interior surfaces has a very strong influence on the emission rate. Compared to the experimental chamber systems, however, the real indoor environment has many other types of surface that will adsorb phthalates to different extents. The emission rate measured in a test chamber may therefore be quite different to the emission rate from the same material in the indoor environment. For this reason, both a two-room model and a more representative three-compartment model were developed successively to estimate the emission rate of DEHP from vinyl flooring, the evolving gas-phase and adsorbed surface concentrations, and human exposures (via inhalation, dermal absorption and oral ingestion of dust) in a realistic indoor environment. Adsorption isotherms for phthalates and plasticizers on interior surfaces, such as carpet, wood, dust and human skin, were derived from previous field and laboratory studies. A subsequent sensitivity analysis revealed that the vinyl flooring source characteristics, as well as mass-transfer coefficients and ventilation rates, are important variables influencing the steady-state DEHP concentration and resulting exposures. A simple uncertainty analysis suggested that residential exposure to DEHP originating from vinyl flooring may fall somewhere between about 5 µg/kg/d and 180 µg/kg/d. The roughly 40-fold range in exposure reveals the inherent difficulty in using biomonitoring results to identify specific sources of exposure in the general population.

This research represents the first attempt to explicitly elucidate the fundamental mechanisms governing the release of phthalates from polymeric building materials as well as their subsequent interaction with interior surfaces. The mechanistic models developed can most likely be extended to predict concentration and exposure arising from other sources of phthalates, other sources of other semi-volatile organic compounds (such as biocides and flame retardants), as well as emissions into other environmental media (food, water, saliva, and even blood). The results will be of value to architects, governments, manufacturers, and engineers who wish to specify low-emitting green materials for healthy buildings. It will permit health professionals to identify and control health risks associated with many of the SVOCs used in indoor materials and consumer products in a relatively inexpensive way.



exposure assessments, emission, di-2-ethylhexyl phthalate (DEHP), chamber study, phthalates, Modeling, indoor, plasticizers, semi-volatile organic compounds (SVOCs), sensitivity, transport, uncertainty