Finite Subdivision Rules from Matings of Quadratic Functions: Existence and Constructions
dc.contributor.author | Wilkerson, Mary | en |
dc.contributor.committeechair | Floyd, William J. | en |
dc.contributor.committeemember | Rossi, John F. | en |
dc.contributor.committeemember | Kay, Leslie D. | en |
dc.contributor.committeemember | Haskell, Peter E. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T20:11:41Z | en |
dc.date.adate | 2012-05-25 | en |
dc.date.available | 2014-03-14T20:11:41Z | en |
dc.date.issued | 2012-04-24 | en |
dc.date.rdate | 2012-05-25 | en |
dc.date.sdate | 2012-05-07 | en |
dc.description.abstract | Combinatorial methods are utilized to examine preimage iterations of topologically glued polynomials. In particular, this paper addresses using finite subdivision rules and Hubbard trees as tools to model the dynamic behavior of mated quadratic functions. Several methods of construction of invariant structures on modified degenerate matings are detailed, and examples of parameter-based families of matings for which these methods succeed (and fail) are given. | en |
dc.description.degree | Ph. D. | en |
dc.identifier.other | etd-05072012-142700 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-05072012-142700/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/27581 | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | Wilkerson_ME_D_2012.pdf | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Combinatorial Dynamics | en |
dc.subject | Hubbard Trees | en |
dc.subject | Matings | en |
dc.subject | Finite Subdivision Rules | en |
dc.title | Finite Subdivision Rules from Matings of Quadratic Functions: Existence and Constructions | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1