VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Chronic Cerebral Hypoperfusion Induces Alterations of Matrix Metalloproteinase-9 and Angiopoietin-2 Levels in the Rat Hippocampus

Files

TR Number

Date

2018-08

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Angiogenic factors contribute to cerebral angiogenesis following cerebral hypoperfusion, and understanding these temporal changes is essential to developing effective treatments. The present study examined temporal alterations in angiogenesis-related matrix metalloproteinase-9 (MMP-9) and angiopoietin-2 (ANG-2) expression in the hippocampus following bilateral common carotid artery occlusion (BCCAo). Male Wistar rats (12 weeks of age) were randomly assigned to sham-operated control or experimental groups, and expression levels of MMP-9 and ANG-2 were assessed after BCCAo (1 week, 4 weeks, and 8 weeks), using western blotting. Protein expression increased 1 week after BCCAo and returned to control levels at 4 and 8 weeks. In addition, immunofluorescence staining demonstrated that the MMP-9- and ANG-2-positive signals were primarily observed in the NeuN-positive neurons with very little labeling in non-neuronal cells and no labeling in endothelial cells. In addition, these cellular locations of MMP-9-and ANG-2-positive signals were not altered over time following BCCAo. Other angiogenic factors such as vascular endothelial growth factor and hypoxia-inducible factor did not differ from controls at 1 week; however, expression of both factors increased at 4 and 8 weeks in the BCCAo group compared to the control group. Our findings increase understanding of alterations in angiogenic factors during the progression of cerebral angiogenesis and are relevant to developing effective temporally based therapeutic strategies for chronic cerebral hypoperfusion-associated neurological disorders such as vascular dementia.

Description

Keywords

BCCAo, Angiogenesis, Angiopoietin-2, Matrix metalloproteinase-9, Vascular dementia

Citation