A study of the kinetics and mechanism of inactivation of a DNA- containing enteric virus by chlorine

dc.contributor.authorChurn, C. Calverten
dc.contributor.departmentEnvironmental Sciences and Engineeringen
dc.date.accessioned2017-05-24T18:19:01Zen
dc.date.available2017-05-24T18:19:01Zen
dc.date.issued1982en
dc.description.abstractA newly discovered enteric virus has recently been associated with large outbreaks of waterborne gastroenteritis. Most commonly referred to as the Norwalk agent, this virus appears to be morphologically and biophysically similar ·to the parvoviruses. Presently there is very little known about the fate of parvoviruses in environmental systems. In this study the parvovirus H-1, a putative human virus containing single-stranded DNA (ssDNA), was used as a model virus for chlorine inactivation experiments. The purpose of this research was two-fold: first, to investigate the kinetics of inactivation of parvovirus H-1 by low levels of free chlorine (0.05 - 0.20 mg L⁻¹) at pH 7 and at 5, 10, 20, and 30°C; and secondly, to determine the mechanism by which chlorine inactivates this virus. Inactivation occurred in the usual dose-response relationship, that is, increasing the chlorine dose caused an increase in the rate of inactivation. The results indicated that perhaps more than one reaction mechanism was responsible for inactivation, and the reaction mechanism was a function of temperature. The energy required for the inactivation reaction using 0.05 mg L⁻¹ free chlorine from 5 to 30°C was graphically determined to be 2.4 Kcal mole⁻¹. The change in entropy was calculated to be -52.34 entropy units. From the mechanism study it was concluded that the initial action of chlorine on parvovirus H-1 was on the capsid. Alterations in the two major capsid proteins caused the virion to rupture, and, as evidenced by electron microscopy the ssDNA was exposed. Also, the adsorption ability of the chlorine-treated virions to host cells was significantly inhibited. This was presumably due to the effect on the spatial arrangement of the capsid proteins in their entirety rather than a loss of, or change, in only one polypeptide. The sedimentation rate of the chlorine-treated whole virus decreased from 116S to 43S. The chlorine caused certain sites on the capsid proteins to become highly reactive which facilitated the formation of higher molecular weight aggregates as detected by fluorographs of electrophoretic protein patterns in polyacrylamide gels. Most significant was the discovery that the ssDNA remained undamaged and was still capable of in vitro replication even after 60 minutes of exposure to 5 mg L⁻¹ of sodium hypochlorite at pH 7.en
dc.description.degreePh. D.en
dc.format.extentx, 137, [2] leavesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/77765en
dc.language.isoen_USen
dc.publisherVirginia Polytechnic Institute and State Universityen
dc.relation.isformatofOCLC# 9424499en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1982.C587en
dc.subject.lcshVirus inhibitorsen
dc.subject.lcshParvovirusesen
dc.subject.lcshChlorineen
dc.titleA study of the kinetics and mechanism of inactivation of a DNA- containing enteric virus by chlorineen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineEnvironmental Sciences and Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1982.C587.pdf
Size:
7.73 MB
Format:
Adobe Portable Document Format