Optimizing control variable selection with algorithms: Parsimony and precision in regression analysis

dc.contributor.authorCampayo-Sanchez, Fernandoen
dc.contributor.authorNicolau, Juan Luisen
dc.date.accessioned2024-10-02T17:06:25Zen
dc.date.available2024-10-02T17:06:25Zen
dc.date.issued2024-09-24en
dc.description.abstractThis research note explores the pivotal role of control variables in any tourism and hospitality research that utilizes regression models in statistical analyses. While theory-driven independent variables offer insight into expected effects, the inclusion of control variables is crucial for mitigating potential confounding factors. In an attempt to strike a balance between model complexity and parsimony, researchers face the challenge of selecting the optimal control variables. To address this issue, the study tests three alternative methods: genetic algorithms, lasso models, and the branch and bound algorithm. Despite their underutilization in tourism research, these methods offer efficient means of selecting control variables, enhancing model precision and interpretation without unnecessarily convoluting the model with irrelevant factors.en
dc.description.versionAccepted versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1177/13548166241287953en
dc.identifier.eissn2044-0375en
dc.identifier.issn1354-8166en
dc.identifier.orcidNicolau Gonzalbez, Juan [0000-0003-0048-2823]en
dc.identifier.urihttps://hdl.handle.net/10919/121261en
dc.language.isoenen
dc.publisherSAGE Publicationsen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectvariable selectionen
dc.subjectcontrol variablesen
dc.subjectgenetic algorithmsen
dc.subjectlasso modelsen
dc.subjectbranch and bound algorithmen
dc.titleOptimizing control variable selection with algorithms: Parsimony and precision in regression analysisen
dc.title.serialTourism Economicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Pamplin College of Businessen
pubs.organisational-groupVirginia Tech/Pamplin College of Business/Hospitality and Tourism Managementen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Pamplin College of Business/PCOB T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Campayo-Sanchez and Nicolau (2024) with appendix accepted manuscript.pdf
Size:
910.68 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: