Maternal Influence and Murine Housing Confound Impact of NLRP1 Inflammasome on Microbiome Composition
dc.contributor.author | Ringel-Scaia, Veronica M. | en |
dc.contributor.author | Qin, Yufeng | en |
dc.contributor.author | Thomas, Cassidy A. | en |
dc.contributor.author | Huie, Kathleen E. | en |
dc.contributor.author | McDaniel, Dylan K. | en |
dc.contributor.author | Eden, Kristin | en |
dc.contributor.author | Wade, Paul A. | en |
dc.contributor.author | Allen, Irving C. | en |
dc.date.accessioned | 2019-08-30T13:47:05Z | en |
dc.date.available | 2019-08-30T13:47:05Z | en |
dc.date.issued | 2019-02-13 | en |
dc.description.abstract | The NLRP1 inflammasome attenuates inflammatory bowel disease (IBD) progression and colitis-associated tumorigenesis. A possible mechanism postulates that the lack of the NLRP1 inflammasome creates permissive niches in the gut for pathogenic bacteria to flourish, causing dysbiosis and increased IBD susceptibility. To evaluate this hypothesis, we characterized the gut microbiome of wild-type, Nlrp1b-/-, and Asc-/- mice under naive conditions by sequencing the V3 region of the 16s rRNA gene. For both genetically modified mouse lines, the microbiome composition reflected overrepresentation of bacteria associated with dysbiosis relative to wild-type animals. Measurement of short- and medium-chain fatty acids by mass spectrometry further revealed significant differences between genotypes. However, prior to concluding that the NLRP1 inflammasome plays a role in regulating the composition of the microbiome, we evaluated two additional strategies for cohousing wild-type and Nlrp1b-/- mice: breeding homozygous parents and cohousing at weaning, and breeding from heterozygous parents and cohousing littermates. We found that maternal influence was the greater predictor of microbiome composition rather than genotype. With the rise in microbiome research across disciplines, our study should be viewed as a cautionary example that illustrates the importance of careful breeding and housing strategies when evaluating host-microbiome interactions. (C) 2019 The Author(s) Published by S. Karger AG, Basel | en |
dc.description.notes | Grants were awarded from the US National Institutes of Health (I.C.A.; R03 DK105975 and K01 DK092355); the Via College of Osteopathic Medicine (VCOM) One Health Center Seed Funding (I.C.A.); Virginia Maryland College of Veterinary Medicine Internal Research Competition (I.C.A.), and the Virginia Tech Institute for Critical Technology and Applied Sciences (I.C.A.). V.M.R.-S. was supported through the American Association of Immunologists Careers in Immunology Fellowship Program. This work was supported, in part, by the Intramural Research Program of the National Institute of Environmental Health Sciences (ES101965 to P.A.W.). | en |
dc.description.sponsorship | US National Institutes of Health [R03 DK105975, K01 DK092355]; Via College of Osteopathic Medicine (VCOM) One Health Center Seed Funding; Virginia Maryland College of Veterinary Medicine Internal Research Competition; Virginia Tech Institute for Critical Technology and Applied Sciences; American Association of Immunologists Careers in Immunology Fellowship Program; Intramural Research Program of the National Institute of Environmental Health Sciences [ES101965] | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1159/000495850 | en |
dc.identifier.eissn | 1662-8128 | en |
dc.identifier.issn | 1662-811X | en |
dc.identifier.issue | 5 | en |
dc.identifier.pmid | 30759441 | en |
dc.identifier.uri | http://hdl.handle.net/10919/93320 | en |
dc.identifier.volume | 11 | en |
dc.language.iso | en | en |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Nod-like receptor | en |
dc.subject | Microbiome | en |
dc.subject | Inflammatory bowel disease | en |
dc.subject | Experimental colitis | en |
dc.subject | Colitis-associated cancer | en |
dc.subject | Short-chain fatty acid | en |
dc.subject | ASC | en |
dc.subject | Dysbiosis | en |
dc.title | Maternal Influence and Murine Housing Confound Impact of NLRP1 Inflammasome on Microbiome Composition | en |
dc.title.serial | Journal of Innate Immunity | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.dcmitype | StillImage | en |
Files
Original bundle
1 - 1 of 1