VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

The Computational Kleinman-Newton Method in Solving Nonlinear Nonquadratic Control Problems

dc.contributor.authorKang, Jinghongen
dc.contributor.committeechairRussell, David L.en
dc.contributor.committeememberSun, Shu-Mingen
dc.contributor.committeememberRogers, Robert C.en
dc.contributor.committeememberLin, Taoen
dc.contributor.committeememberKim, Jong Uhnen
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T20:21:42Zen
dc.date.adate1998-04-28en
dc.date.available2014-03-14T20:21:42Zen
dc.date.issued1998-04-23en
dc.date.rdate1998-04-28en
dc.date.sdate1998-04-23en
dc.description.abstractThis thesis deals with non-linear non-quadratic optimal control problems in an autonomous system and a related iterative numerical method, the Kleinman-Newton method, for solving the problem. The thesis proves the local convergence of Kleinman-Newton method using the contraction mapping theorem and then describes how this Kleinman-Newton method may be used to numerically solve for the optimal control and the corresponding solution. In order to show the proof and the related numerical work, it is necessary to review some of earlier work in the beginning of Chapter 1 [Zhang], and to introduce the Kleinman-Newton method at the end of the chapter. In Chapter 2 we will demonstrate the proof. In Chapter 3 we will show the related numerical work and results.en
dc.description.degreePh. D.en
dc.identifier.otheretd-32398-17156en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-32398-17156/en
dc.identifier.urihttp://hdl.handle.net/10919/30435en
dc.publisherVirginia Techen
dc.relation.haspartthesis.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectNonlinear Nonquadratic Controlen
dc.subjectHamiltonian Functionen
dc.subjectAdjoint Equationen
dc.subjectFixed Point Theoremen
dc.subjectContractionen
dc.subjectInterpolationen
dc.titleThe Computational Kleinman-Newton Method in Solving Nonlinear Nonquadratic Control Problemsen
dc.typeDissertationen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format