Designing Scaffolds for Directed Cell Response in Tissue Engineering Scaffolds Fabricated by Vat Photopolymerization
dc.contributor.author | Chartrain, Nicholas | en |
dc.contributor.committeechair | Williams, Christopher B. | en |
dc.contributor.committeechair | Whittington, Abby R. | en |
dc.contributor.committeemember | Long, Timothy E. | en |
dc.contributor.committeemember | Zheng, Xiaoyu | en |
dc.contributor.committeemember | Foster, Earl Johan | en |
dc.contributor.department | Materials Science and Engineering | en |
dc.date.accessioned | 2019-12-05T09:01:19Z | en |
dc.date.available | 2019-12-05T09:01:19Z | en |
dc.date.issued | 2019-12-04 | en |
dc.description.abstract | Vat photopolymerization (VP) is an additive manufacturing (AM) technology that permits the fabrication of parts with complex geometries and feature sizes as small as a few microns. These attributes make VP an attractive option for the fabrication of scaffolds for tissue engineering. However, there are few printable materials with low cytotoxicity that encourage cellular adhesion. In addition, these resins are not readily available and must be synthesized. A novel resin based on 2-acrylamido-2-methyl-1-propanesulfonic acid (NaAMPS) and poly(ethylene glycol) diacrylate (PEGDA) was formulated and printed using VP. The mechanical properties, water content, and high fidelity of the scaffold indicated promise for use in tissue engineering applications. Murine fibroblasts were observed to successfully adhere and proliferate on the scaffolds. The growth, migration, and differentiation of a cell is known to dependent heavily on its microenvironment. In engineered constructs, much of this microenvironment is provided by the tissue scaffold. The physical environment results from the scaffold's geometrical features, including pore shape and size, porosity, and overall dimensions. Each of these parameters are known to affect cell viability and proliferation, but due to the difficulty of isolating each parameter when using scaffold fabrication techniques such as porogen leaching and gas foaming, conflicting results have been reported. Scaffolds with pore sizes ranging from 200 to 600 μm were fabricated and seeded with murine fibroblasts. Other geometric parameters (e.g., pore shape) remained consistent between scaffold designs. Inhomogeneous cell distributions and fewer total cells were observed in scaffolds with smaller pore sizes (200-400 μm). Scaffolds with larger pores had higher cell densities that were homogeneously distributed. These data suggest that tissue scaffolds intended to promote fibroblast proliferation should be designed to have pore at least 500 μm in diameter. Techniques developed for selective placement of dissimilar materials within a single VP scaffold enabled spatial control over cellular adhesion and proliferation. The multi-material scaffolds were fabricated using an unmodified and commercially available VP system. The material preferences of murine fibroblasts which resulted in their inhomogeneous distribution within multi-material scaffolds were confirmed with multiple resins and geometries. These results suggest that multi-material tissue scaffolds fabricated with VP could enable multiscale organization of cells and material into engineered constructs that would mimic the function of native tissue. | en |
dc.description.abstractgeneral | Vat photopolymerization (VP) is a 3D printing (or additive manufacturing) technology that is capable of fabricating parts with complex geometries with very high resolution. These features make VP an attractive option for the fabrication of scaffolds that have applications in tissue engineering. However, there are few printable materials that are biocompatible and allow cells attachment. In addition, those that have been reported cannot be obtained commercially and their synthesis requires substantial resources and expertise. A novel resin composition formulated from commercially available components was developed, characterized, and printed. Scaffolds were printed with high fidelity. The scaffolds had mechanical properties and water contents that suggested they might be suitable for use in tissue engineering. Fibroblast cells were seeded on the scaffolds and successfully adhered and proliferated on the scaffolds. The growth, migration, and differentiation of cells is influenced by the environmental stimuli they experience. In engineered constructs, the scaffold provides many of stimuli. The geometrical features of scaffolds, including how porous they are, the size and shape of their pores, and their overall size are known to affect cell growth. However, scaffolds that have a variety of pore sizes but identical pore shapes, porosities, and other geometric parameters cannot be fabricated with techniques such as porogen leaching and gas foaming. This has resulted in conflicting reports of optimal pore sizes. In this work, several scaffolds with identical pore shapes and porosities but pore sizes ranging from 200 μm to 600 μm were designed and printed using VP. After seeding with cells, scaffolds with large pores (500-600 μm) had a large number of evenly distributed cells while smaller pores resulted in fewer cells that were unevenly distributed. These results suggest that larger pore sizes are most beneficial for culturing fibroblasts. Multi-material tissue scaffolds were fabricated with VP by selectively photocuring two materials into a single part. The scaffolds, which were printed on an unmodified and commercially available VP system, were seeded with cells. The cells were observed to have attached and grown in much larger numbers in certain regions of the scaffolds which corresponded to regions built from a particular resin. By selectively patterning more than one material in the scaffold, cells could be directed towards certain regions and away from others. The ability to control the location of cells suggests that these printing techniques could be used to organize cells and materials in complex ways reminiscent of native tissue. The organization of these cells might then allow the engineered construct to mimic the function of a native tissue. | en |
dc.description.degree | Doctor of Philosophy | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:21681 | en |
dc.identifier.uri | http://hdl.handle.net/10919/95939 | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Additive manufacturing | en |
dc.subject | 3D Printing | en |
dc.subject | Tissue Engineering | en |
dc.subject | Regenerative Medicine | en |
dc.subject | Biomaterials | en |
dc.title | Designing Scaffolds for Directed Cell Response in Tissue Engineering Scaffolds Fabricated by Vat Photopolymerization | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Materials Science and Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Doctor of Philosophy | en |