VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Urban soil carbon and nitrogen converge at a continental scale

Abstract

In urban areas, anthropogenic drivers of ecosystem structure and function are thought to predominate over larger-scale biophysical drivers. Residential yards are influenced by individual homeowner preferences and actions, and these factors are hypothesized to converge yard structure across broad scales. We examined soil total C and total delta C-13, organic C and organic delta C-13, total N, and delta N-15 in residential yards and corresponding reference ecosystems in six cities across the United States that span major climates and ecological biomes (Baltimore, Maryland; Boston, Massachusetts; Los Angeles, California; Miami, Florida; Minneapolis-St. Paul, Minnesota; and Phoenix, Arizona). Across the cities, we found soil C and N concentrations and soil delta N-15 were less variable in residential yards compared to reference sites supporting the hypothesis that soil C, N, and delta N-15 converge across these cities. Increases in organic soil C, soil N, and soil delta N-15 across urban, suburban, and rural residential yards in several cities supported the hypothesis that soils responded similarly to altered resource inputs across cities, contributing to convergence of soil C and N in yards compared to natural systems. Soil C and N dynamics in residential yards showed evidence of increasing C and N inputs to urban soils or dampened decomposition rates over time that are influenced by climate and/or housing age across the cities. In the warmest cities (Los Angeles, Miami, Phoenix), greater organic soil C and higher soil delta C-13 in yards compared to reference sites reflected the greater proportion of C-4 plants in these yards. In the two warm arid cities (Los Angeles, Phoenix), total soil delta C-13 increased and organic soil delta C-13 decreased with increasing home age indicating greater inorganic C in the yards around newer homes. In general, soil organic C and delta C-13, soil N, and soil delta N-15 increased with increasing home age suggesting increased soil C and N cycling rates and associated C-12 and N-14 losses over time control yard soil C and N dynamics. This study provides evidence that conversion of native reference ecosystems to residential areas results in convergence of soil C and N at a continental scale. The mechanisms underlying these effects are complex and vary spatially and temporally.

Description

Keywords

natural abundance carbon stable isotopes, natural abundance nitrogen stable isotopes, residential yard management, soil C cycling, soil N cycling, urban residential yards

Citation