Efficient Resource Allocation Schemes for Wireless Networks with with Diverse Quality-of-Service Requirements


TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Quality-of-Service (QoS) to users is a critical requirement of resource allocation in wireless networks and has drawn significant research attention over a long time. However, the QoS requirements differ vastly based on the wireless network paradigm. At one extreme, we have a millimeter wave small-cell network for streaming data that requires very high throughput and low latency. At the other end, we have Machine-to-Machine (M2M) uplink traffic with low throughput and low latency. In this dissertation, we investigate and solve QoS-aware resource allocation problems for diverse wireless paradigms.

We first study cross-layer dynamic spectrum allocation in a LTE macro-cellular network with fractional frequency reuse to improve the spectral efficiency for cell-edge users. We show that the resultant optimization problem is NP-hard and propose a low-complexity layered spectrum allocation heuristic that strikes a balance between rate maximization and fairness of allocation. Next, we develop an energy efficient downlink power control scheme in a energy harvesting small-cell base station equipped with local cache and wireless backhaul. We also study the tradeoff between the cache size and the energy harvesting capabilities. We next analyzed the file read latency in Distributed Storage Systems (DSS). We propose a heterogeneous DSS model wherein the stored data is categorized into multiple classes based on arrival rate of read requests, fault-tolerance for storage etc. Using a queuing theoretic approach, we establish bounds on the average read latency for different scheduling policies. We also show that erasure coding in DSS serves the dual purpose of reducing read latency and increasing the energy efficiency.

Lastly, we investigate the problem of delay-efficient packet scheduling in M2M uplink with heterogeneous traffic characteristics. We classify the uplink traffic into multiple classes and propose a proportionally-fair delay-efficient heuristic packet scheduler. Using a queuing theoretic approach, we next develop a delay optimal multiclass packet scheduler and later extend it to joint medium access control and packet scheduling for M2M uplink. Using extensive simulations, we show that the proposed schedulers perform better than state-of-the-art schedulers in terms of average delay and packet delay jitter.



Quality-of-Service, Dynamic Resource Allocation, Cross-Layer Optimization, Distributed Storage, M2M Communication, Delay-Optimal Scheduler